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Abstract

This work is devoted to study the uncertain attacking behavior of computer viruses in wireless sensor network involving fuzzy 
fractional derivatives with non-local Mittag-Leffler function kernel. Based on epidemic theory and fractional calculus, we propose 
a fuzzy fractional Susceptible – Infectious – Quarantine – Recovered (SIQR) model to describe dynamics of virus propagation with 
quarantine in the network. The concept of Atangana–Baleanu fuzzy fractional derivative in Caputo sense is proposed with some 
important properties to investigate the fractional SIQR model with fuzzy data. The fuzzy Laplace transform of Atangana–Baleanu 
derivative is proposed to represent the analytic mild solutions of the fractional SIQR model. Then, the existence and uniqueness of 
mild solutions is proved by using generalized contraction principle. An efficient numerical scheme to solve numerical solutions of 
the fractional SIQR model is introduced. Finally, some graphical representations are given to show the uncertain attack behavior 
of computer virus and dynamical behavior of the model.
© 2021 Elsevier B.V. All rights reserved.

Keywords: Fuzzy fractional SIQR model; Wireless sensor network; Fuzzy Atangana–Baleanu fractional derivatives; Computer virus propagation

1. Introduction

Wireless Sensor Networks (WSNs) are known as dense systems consists of numerous small-sized, energy-limited, 
and multi-functional sensor nodes that are deployed to collect data from an environment or monitor of a phenomenon 
and then, transmit the collected data to users and administrators. The appearance of WSNs in the past two decades has 
led to the dramatic change in the way that data is transferred and information exchange takes place and open up for the 
high development of digital age. Recently, WSNs have received extensive attention due to their great potential in civil 
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Fig. 1. The diagram of wireless sensor network.

and military applications, such as supervision of the transportation of pollutants, industrial monitoring, military target 
tracking, disaster recovery, biological detection, seismic sensing and health monitoring. Over the past few decades, 
along with the rapid spread of the internet and wireless sensor networks, the spreads of malware objects, such as 
viruses, worms, trojans, etc, have also been staggering. In addition, due to the restriction of memory resources of 
sensor nodes and disadvantage in their locations, WSNs often have weak defenses and become attractive targets of 
malware objects, especially cyber attacks by computer viruses. See Fig. 1.

Therefore, antivirus software has become an important way to safeguard computer systems and WSNs. Unfortu-
nately, no antivirus software can detect and clear all kinds of viruses, and the development of antivirus software, in 
turn, always lags behind that of viruses. Therefore, the most important prerequisite to optimally minimize the influ-
ences of computer virus is to understand the features of computer viruses and the characteristics of their spreads and 
then, to predict their evolutionary directions. For this goal, based on the similarity between the spread of diseases in 
populations and the spread of computer viruses in WSNs, some epidemic models have been applied to model and 
study the spread of computer viruses in WSNs. The mathematical modeling of malware objects transmissions has 
been approached by a number of researchers with variety of models over past decades. In [29], Mishra and Saini 
proposed a delay SEIRS epidemic model to study the spread of malicious objects in computer networks and the 
stability of malicious objects-free equilibrium point. Next, the paper [30] formulated the transmission of worms in 
wireless sensor network by the SEIRS-V model to describe the dynamics of the transmission with respect to time and 
investigate the relation between its basic reproduction number and the stability of its equilibrium points. After that, a 
predator-prey model [31] was proposed to analyze the impact of energy conservation in the context of worm attacks in 
wireless sensor network and determine the conditions for the stability of different equilibrium points. Recently, Singh 
et al. [44] studied a fractional epidemiological model for the spread of computer viruses and discussed the influence 
of arbitrary order with the dynamical behaviors of virus transmission.

The infection of malware objects such as viruses, worms or trojans in WSNs are based on the transmission of 
electric-waves and signals between wireless sensor nodes. However, in particular, signal transmissions are known as 
memory and hereditary processes that often have the significant dependence on the flexibility of environment, the his-
tory of functions or the texture and characteristic properties of the material, that are difficult to describe correctly by 
mean of integer order differential systems. Fractional derivatives and fractional integrals have non-local property, i.e., 
these derivatives and integrals can present both the past information and distributed effect of any physical systems. 
This proves the great ability of fractional calculus to represent complex real-world phenomena more accurately and 
efficiently than ordinary calculus. Indeed, fractional calculus is now known as an important branch of mathematical 
analysis with a long history of development and various applications in science and engineering. Many scientists con-
sidered fractional-order derivative as an effective tool to describe memory phenomena. Here, the kernel function of 
fractional derivative is called memory function. Each physical phenomena can be better modeled by a different type 
of kernel functions. For example, in order to express the properties of viscoelastic materials with memory in Kevin 
model, Voigt model, Maxwell model, they proposed to use the non-singular kernel function (t − s)α while in the case 
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of expressing decay physical processes, the singular kernel of the forms exp(t − s)α or Eα,β((t − s)α) were suggested. 
This leads to there are many concepts of fractional derivatives with different capability of applications. Some well-
known derivatives, such as Caputo, Riemann–Liouville fractional derivatives or the definition of fractional derivative 
in sense of Grünwald, that uses the power law as singular kernel, see [24,39,42]. Alongside with the development of 
fractional calculus, fractional differential equations and fractional partial differential equations have been also dra-
matically studied with the high applicability, see [4,10–12,16,23,32,44]. In several decades, the study of fractional 
calculus in uncertain environment has achieved some noticeable results. For instance, R. Agarwal [2] investigated 
Cauchy problem for fuzzy fractional equations, in which the proposed fuzzy fractional differential equations were 
studied without using fuzzy fractional derivatives. Next, Allahviranloo et al. [6] investigated the initial value problem 
for fuzzy fractional differential equations with the used of fuzzy Riemann-Liouville fractional derivatives. In the field 
of fuzzy partial differential equations, Long et al. studied local and non-local problems for fuzzy fractional partial 
differential equations under Caputo gH-differentiability, see [26,27]. Recently, there have been several literature that 
considered fractional epidemic models and their applications in computer networks and WSNs such as Hassouna et 
al. [17], Huo and Zhao [20], J. Singh et al. [44]. In the last decades, many researchers working within the field of 
fractional calculus have stated that the all physical problems were claimed to follows the power-law process, i.e., the 
fractional operators have singular kernel. However, it is implied from [19] that some models of dissipative phenomena 
cannot be adequately described by the fractional derivative operators with singular kernel. Indeed, there are quite a lot 
of physical problems that are modeled better by other type of kernel than by power-law such as the problem of fatigue 
expressed by a runner or the decay process of a dead body in force air. Recently, Caputo and Fabrizio [15] have sug-
gested an alternative concept of fractional calculus with non-singular kernel by using the exponential decay as kernel. 
An other concept of fractional differentiation with non-singular kernel is proposed by Atangana and Baleanu [8]. The 
Atangana–Baleanu (AB) fractional calculus uses the Mittag-Leffler function as its non-local kernel, that follows at 
the same time the exponential decay and power law. The new concepts of Atangana–Baleanu fractional calculus are 
expected to better modeling the effect of memory in complex physical systems and recently, these types of fractional 
calculus have achieved lots of noticeable results. For example, in the literature [9], Atangana applied the concept of 
Caputo–Fabrizio fractional derivative to study a modified fractional model of nonlinear Fisher’s reaction–diffusion 
equation. The Caputo–Fabrizio fractional derivative in Riemann–Liouville sense then continued to be applied to in-
vestigate the numerical algorithm of a fractional partial differential equation of parabolic type in [35]. An application 
of Caputo–Fabrizio fractional calculus was discussed in [23] with the use of Caputo–Fabrizio fractional derivative 
to model the dynamics of hepatitis E virus. Another result on the fractional calculus of fuzzy-valued functions was 
proposed by Son et al. [48] with the foundation on some different types of fuzzy fractional derivatives under Fréchet 
differentiability. In addition, Adams–Bashforth numerical scheme was applied to describe behavior of the HEV dis-
ease model. In the literature [10], the authors demonstrated the application of fractional differential operators with 
no index law properties to statistic and dynamical systems compared with fractional operators obeying index law. In 
addition, some important properties and theorems for the Atangana–Baleanu fractional derivative of an analytic func-
tion were established. After that, Atangana and Hammouch [12] constructed a new class of partial integro-differential 
equations with fractional operators based on the new generalized Mittag-Leffler function and presented a detailed 
discussion underpinning the conditions for which the new partial integro-differential equation is well-posed. Next, 
Owolabi [36] discussed an ecological system consisting of a predator and two preys with the newly derived two-step 
fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. In the field of engineer-
ing, Alkahtani [4] used the Caputo Atangana–Baleanu fractional derivative to study Chua’s circuit model and gave 
a numerical scheme for numerically solving the modified model. In the literature [40], Saad et al. compared three 
concepts of fractional derivatives: Liouville-Caputo, Caputo-Fabrizio, Mittag-Leffler fractional time derivatives and 
applied to study three modified fractional models of Burgers equation and corresponding approximate solutions based 
on Homotopy analysis transform method.

It is natural that all real-world phenomena always contain vague and uncertain factors. Hence, there is often a con-
siderable degree of uncertainty when we model, solve and interpret the problems in natural environments. In addition, 
rather than the particular value, we may have only imprecise, and incomplete information about the variables and 
parameters due to applying different operating conditions or a result of errors in measurement and experiment. As 
a consequence, fuzzy differential equations appeared as a natural way to model the propagation of epistemic uncer-
tainty in a dynamical environment. Especially, for epidemic models in wireless sensor network, because the signal 
transmission environment has memory property and always contains uncertain parameters, it is necessary to inter-
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pret and control the uncertain trajectory of the transmission in these models. This class of differential equations then 
demonstrated its important role in describing real-world problems with various applications in many fields of science 
such as biological processes [38,53], control problems [1] and engineering [22,43], etc. In addition, to deal with non-
local real-world phenomena with memory property, an interesting type of differential equations, combined both the 
notions of fractional order derivative and fuzzy, was proposed by Agarwal [2]. Fuzzy fractional differential equations 
are considered as effective tools to enable researchers to describe the uncertain behaviors of dynamical systems in 
time and space. Along with mathematical progress, they also have a wide range of applications in various fields of 
science and engineering such as physics, chemistry, applied mathematics, biology, economics. For example, the paper 
[3] studied the optimality condition for a fuzzy optimal control problem subject to fuzzy fractional differential system 
with the fractional derivative in Caputo sense. In the literature [18], the authors studied the existence and uniqueness 
of fuzzy solution to an initial value problem of Caputo-Katugampola fractional differential equations in fuzzy setting. 
In the perspectives of control theory, Mani et al. [32] addressed the synchronization problem of chaotic fractional-
order fuzzy cellular neural networks through designing the novel adaptive control scheme, while in [33], the authors 
proposed a novel adaptive T-S fuzzy variable structure control technique for nonlinear fractional-order systems in 
spite of the saturating input and control fluctuations. In [34], the authors presented a novel adaptive interval type-2 
fuzzy fractional-order back-stepping sliding mode control method to design controllers for some classes of nonlinear 
fully-actuated and under-actuated mechanical systems with uncertainty. The stability of fuzzy fractional dynamic sys-
tems also get more attention. In [52], Tyagi and Martha discussed some criteria for the finite-time stability of a class 
of fractional fuzzy differential systems with proportional delay and applied to study the stability of neural network. 
Beside analytic results, some numerical methods for fractional differential systems were also studied in [33,53]. For 
more applications, see [37,45,47,54,55].

In this work, we formulate a fractional mathematical model of computer virus propagation with quarantine and 
uncertain initial data in WSNs via Caputo Atangana–Baleanu fractional derivative. Here, we consider the fractional 
derivative with non-local and non-singular kernel since it has a great ability in describing dramatic spread like that of 
computer viruses and permits the incorporation of memory effect in the model. In summary, the paper’s contributions 
can be highlighted as follows:

(i) In Section 2, the formulation of a fractional mathematical model of virus propagation in WSNs is presented. The 
proposed model consists of four compartments: Susceptible (S) – Infectious (I) – Quarantine (Q) – Recovered
(R) that describes the uncertain dynamical behaviors of the virus attack with quarantine in the network and 
fuzziness in initial data.

(ii) A new concept of fractional derivative with non-local and non-singular kernel of fuzzy-valued functions, namely 
Caputo Atangana–Baleanu fractional derivative, is introduced in Section 4. Here, the proposed Atangana–
Baleanu fractional derivative has the non-local kernel of Mittag-Leffler function type. Additionally, the concept 
of Riemann–Liouville Atangana–Baleanu fractional integral associated with the proposed fractional derivative 
is also derived. Moreover, the fuzzy Laplace transform for the new fractional order derivative is presented in 
Appendix section.

(iii) An initial value problem (6) for the fuzzy fractional differential system with Atangana–Baleanu fractional gen-
eralized Hukuhara derivative in sense of Caputo is studied at Section 5. Then, the integral formulas of mild 
solutions in both type 1 and type 2 of the problem (6) are constructed and proved by using fuzzy Laplace trans-
form (Theorem 5.1).

(iv) The existence and uniqueness of mild solutions of the initial value problem (6) are obtained by virtue of gener-
alized contraction principle in Theorem 5.2 and Theorem 5.3.

(v) A numerical algorithm to numerically solve the initial value problem (1)–(2) for fractional SIQR model with 
fuzzy initial data is proposed and demonstrates its effectiveness by simulations in Section 6.

2. The attacking model of viruses in WSNs

In this work, we consider the fractional-order model of virus propagation in wireless sensor network. In this net-
work, it is assumed that all sensor nodes belong to one of four possible states during the process:

4
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Fig. 2. The SIQR model of virus propagation.

(S) The state (S) consists of all wireless sensor nodes which haven’t been infected by any virus, however, these nodes 
are vulnerable to virus and hence, they are called susceptible nodes.

(I) The wireless sensor nodes in the state (I) have been infected by viruses in WSNs and moreover, they may infect 
to other sensor nodes in the state (S). The sensor nodes in this state are said to be infectious nodes.

(Q) The state (Q) consists of all wireless sensor nodes which are quarantined from the nodes in the state (I) and these 
nodes are said to be quarantine nodes.

(R) The sensor nodes in the state (R) are clear of viruses, and they are temporarily immune. However, these sensor 
nodes then become susceptible towards the possible attack of viruses.

Denote S(t), I (t), Q(t) and R(t) by the numbers of susceptible, infectious, quarantine and recovered sensor nodes 
at time t , respectively. Then, the model of virus propagation can be schematically described in following diagram, see 
Fig. 2.

To defend WSNs against virus’s attacking, we need to accurately understand the dynamic characteristics of the 
spread of viruses. Hence, the mathematical modeling for virus propagation is considered as an effective tool for not 
only describing the process of information and disease diffusion in human society, but also predicting the outbreak of 
malware propagation in WSNs. In this work, we proposed the SIQR model to describe the spread of computer viruses 
in WSNs. Here, we assume that every independent sensor node in these states (S), (I), (Q) or (R) leaves the network 
with a rate μ. Then, the mathematical SIQR model can be formulated as follows:

State (S): Under assumption that the sensor nodes outside the WSNs enter the network at a rate A, the number 
of susceptible nodes decreases since these nodes are infected by viruses with probability λI (t) and leave 
the network with a rate μ, while there is an increase in the number of susceptible nodes coming from the 
recovered and quarantine states with rates σ and ω, respectively. Finally, the rate of change of the state (S)
can be formulated in following differential equation:

dS(t)

dt
= A − λS(t)I (t) + ωQ(t) + σR(t) − μS(t).

It should be noted that the transmission of computer viruses in WSNs is a complex physical phenomena 
having non-local property with memory effects. Thus, fractional derivatives with non-singular kernel are 
suggested to represent this process for more accurately and efficiently. In this work, we introduce the con-
cepts of Caputo Atangana–Baleanu derivative–a fractional derivative with non-local kernel of Mittag–Leffler 
function type, to represent the rate of change of virus propagation in WSNs. In addition, the approach of 
fuzzy dynamic systems is commonly employed to deal with the problem of virus’s attacking in the real-
world environments that contain vague factors and often have a lack of information or incomplete signals. 
This approach allows us to depict and present the uncertain behaviors of propagation in real-world environ-
ment. Moreover, this interpretation can be closer to the origin of reality models, and it has enough ability 
to be extended to the other models. Therefore, we propose here the concept of fuzzy Atangana–Baleanu 
fractional derivative to represent the rate of change of the quantity (S):

abcD
β
+S(t) = A − λS(t)I (t) + ωQ(t) + σR(t) − μS(t).

5
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Here, abcD
β
+ is the fuzzy Atangana–Baleanu fractional differential operator of order β and S, I, Q, R : R →

E are given fuzzy-valued functions.

By the same arguments, we also formulate the fractional differential equations to describe the rate of change of 
three states (I), (Q) and (R) as follows:

State (I): It is a fact that viruses infect sensor nodes in the state (S) and transfer them into the infectious state with a 
probability λI (t). Each infectious node then belongs to one of three following cases:

(i) The infectious node leaves the WSNs with a rate μ.
(ii) Under the action of detection programs, every infectious node can be isolated to be a quarantined node 

with probability γ .
(iii) By antivirus programs, each infectious node becomes recovered node with a rate ν.
Hence, the fractional differential equation describing the rate of change of (I) is given by

abcD
β
+I (t) = λS(t)I (t) − (ν + γ + μ)I (t).

State (Q): It is well-known that the infectious node can be isolated to be a quarantined node with a probability γ . 
Then, each sensor node in the state (Q) can be transferred into one of following states:
(i) Each quarantine node can leave the WSNs with a rate μ or be released to the recovered state with a rate 

η.
(ii) The quarantine node can be released to the susceptible state with a rate ω by reinstalling the systems.
Then, the fractional differential equation describing the rate of change of (Q) is given by

abcD
β
+Q(t) = γ I (t) − (η + μ + ω)Q(t).

State (R): The rate of change of the recovered state (R) is described as follows
(i) Each recovered node leaves the WSNs with a rate μ and each quarantine node is released to the recovered 

state with a rate η.
(ii) By using antivirus program, each infectious node is recovered with a rate ν. These nodes then enter the 

WSNs and become susceptible nodes with a rate σ .
Hence, the fractional differential equation with respect to the state (R) is

abcD
β
+R(t) = νI (t) + ηQ(t) − (σ + μ)R(t).

In summary, uncertain dynamic behavior of the virus propagation is modeled by the following fuzzy fractional 
differential system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

abcD
β
+S(t) = A − λS(t)I (t) + ωQ(t) + σR(t) − μS(t)

abcD
β
+I (t) = λS(t)I (t) − (ν + γ + μ)I (t)

abcD
β
+Q(t) = γ I (t) − (η + μ + ω)Q(t)

abcD
β
+R(t) = νI (t) + ηQ(t) − (σ + μ)R(t)

(1)

subject to the fuzzy initial conditions

S(0) = S0, I (0) = I0, Q(0) = Q0, R(0) = R0. (2)

Here, the parameters of the fractional differential system (1) are discussed in Table 1.
Some related properties to evaluate virus’s attacking behavior of fractional SIQR model are given by

• Denote by N(t) the total number of sensor nodes in WSNs, that is

N(t) = S(t) + I (t) + Q(t) + R(t), ∀ t ≥ 0.

• The basic reproduction number is an epidemiologic metric used to describe the transmissibility of infectious 
agents such as viruses, worms or trojans. In the SIQR model, the basic reproduction number R of fractional 

differential system (1) is given by R = λA

μ(ν + γ + μ)
.

6
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Table 1
Variables and some parameters.

Meaning

Variable

S(t) The number of susceptible nodes at time t

I (t) The number of infectious nodes at time t

Q(t) The number of quarantine nodes at time t

R(t) The number of recovered nodes at time t

Parameter

ν The recovery rate
σ The rate of being susceptible from the recovered state
λ The rate of being infected from the susceptible state
μ The rate of logging out the network of sensor nodes
η The rate for quarantine node is released to recovered node
ω The rate of being susceptible from the quarantine state
γ The probability for an infectious node is isolated to be a quarantined node
A The rate of logging in the network of sensor nodes

• The equilibrium points of the fuzzy fractional differential system (1) are obtained by solving the corresponding 
stationary system. Then, we directly obtain that the set of equilibrium points consists of a virus–free equilibrium 

point E1 =
(

A
μ
,0,0,0

)
and a virus–endemic equilibrium point E2 = (S∗, I∗,Q∗,R∗).

3. Preliminaries

In this section, we recall some essential facts from basic concepts of fuzzy analysis and fuzzy fractional calculus 
[13,14,25,49,24,39]. Since there are some derivative and integral operators used in this paper then in order to avoid 
confusing for the readers, we introduce a table of used notations (see Table 2 in Appendix section).

Firstly, we recall from [13] that a fuzzy number u on R is a mapping u: [a, b] ⊆ R → [0, 1] satisfying four 
following conditions: normal, upper semi-continuous, fuzzy convex and compact supported. Denote by E the space 
of all fuzzy numbers on the real line R. Then, for each u, v ∈ E , it is well-known that

(i) The level sets or α-cuts of the fuzzy number u, denoted by [u]α, is defined by

[u]α =
{

{x ∈ R : u(x) ≥ α} if α ∈ [0,1]
cl(supp u) if α = 0

and can be written in the parametric form [u]α = [u−
α , u+

α ], α ∈ [0, 1].
(ii) For each α ∈ [0, 1], the length of α-cuts of the fuzzy number u is denoted by

len([u]α) = u+
α − u−

α .

(iii) The generalized Hukuhara difference (or gH-difference for short) of u and v, denoted by u �gH v, is an element 
w ∈ E such that

u �gH v = w ⇐⇒
[

(i) u = v + w

(ii) u = v � (−1)w,

where + and � are Minkovski addition and Hukuhara difference of u and v, respectively.
(iv) The space E is a complete metric space endowed with the metric

d∞(u, v) = sup
α∈[0,1]

dH

(
[u]α , [v]α

)= sup
α∈[0,1]

max
{∣∣u−

α − v−
α

∣∣ , ∣∣u+
α − v+

α

∣∣} .

In addition, the norm ‖.‖ on the space E is defined by

‖u‖ = d∞(u, 0̂) = sup
α∈[0,1]

dH

([
u−

α ,u+
α

]
, [0,0]

)
,

7
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where 0̂ ∈ E is zero fuzzy number and 
[
0̂
]α = [0, 0] for all α ∈ [0, 1]. However, the metric space (E , d∞) is 

neither linearity space nor locally compact space, see [13].
(v) Denote E n := E × E × · · · × E︸ ︷︷ ︸

n

. Then, we define the vector-valued metric on the space E n by a mapping Dn :
E n × E n → Rn, in which

Dn(u, v) = (
d∞(u1, v1) d∞(u2, v2) · · · d∞(un, vn)

)t
,

for all u = (u1, . . . , un), v = (v1, . . . , vn) ∈ E n and t denotes for the transposition of a vector or a matrix. It 
should be noted that the space (E n,Dn) is a generalized complete metric space. A preceding result for the case 
n = 2 was presented in [28]. The proof for general case is left as an exercise to the readers.

Example 3.1. Let us consider an L–R fuzzy number A given by

A =

⎧⎪⎨
⎪⎩

x2 if 0 ≤ x < 1
(3−x)2

4 if 1 ≤ x ≤ 3

0 if x /∈ [0,3],
which illustrates the concept: “A number is near 1”. Then, the α-cuts of the fuzzy number A are given by [A]α =[√

α,3 − 2
√

α
]
, α ∈ [0, 1]. In addition, the norm of A is given by

‖A‖ = d∞
(
A, 0̂

)
= sup

α∈[0,1]
max

{∣∣√α
∣∣ , ∣∣3 − 2

√
α
∣∣}= 3.

Let f : [0, b] ⊂ R → E be a fuzzy-valued function. Then, the detailed concepts on the limit of function, the 
continuity, the gH-differentiability and integrability can be referred from [14,25]. In the following, we recall some of 
the most essential properties of fuzzy-valued functions:

Definition 3.1 ([13,14]). The fuzzy-valued function f is called generalized Hukuhara differentiable (or gH-
differentiable for short) on the interval (0, b) if and only if it is gH-differentiable at each point t0 ∈ (0, b), i.e., 
there exists f ′

gH (t0) ∈ E such that for all h > 0 sufficiently small, we have

f (t0 + h) �gH f (t0) = f ′
gH (t0)h + ε(h),

where the function εh : R+ → E satisfies lim
h→0

1
h
d∞(εh(h), ̂0) = 0. The fuzzy number f ′

gH (t0) is then called gener-

alized Hukuhara derivative (or gH-derivative for short) of function f (t) at the point t0. Denote by C1 ((0, b),E ) the 
space of all continuously gH-differentiable fuzzy functions on (0, b).

Definition 3.2 ([14]). Assume that the function f ∈ C1 ((0, b),E ) and its α-cuts are written in following parametric 
form [f (t)]α = [f −

α (t), f +
α (t)] for each t ∈ (0, b) and α ∈ [0, 1].

(i) If f is gH-differentiable in type 1 at t0 then 
[
f ′

1−gH (t0)
]α = [

(f −
α )′(t0), (f +

α )′(t0)
]
.

(ii) If f is gH-differentiable in type 2 at t0 then 
[
f ′

2−gH (t0)
]α = [

(f +
α )′(t0), (f −

α )′(t0)
]
.

Definition 3.3 ([25]). Assume that the α-cuts of a fuzzy-valued function f can be written in parametric form 
[f (t)]α = [f −

α (t), f +
α (t)] for each t ∈ [0, b], α ∈ [0, 1] and f −

α (t), f +
α (t) are measurable and Lebesgue integrable 

on the interval [0, b]. Then, the Lebesgue integral of f (t) is denoted by 
∫ b

0 f (t)dt whose α-cuts are given by⎡
⎣ b∫

0

f (t)dt

⎤
⎦

α

=
⎡
⎣ b∫

0

f −
α (t)dt,

b∫
0

f +
α (t)dt

⎤
⎦ for each α ∈ [0,1].

The space of all Lebesgue integrable fuzzy-valued functions on [0, b] is denoted by L1([0, b], E ) whose the properties 
used throughout this paper can be referred in [13,25,46].

8
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Definition 3.4 ([7,41]). The Riemann–Liouville fractional integral of order β > 0 of a fuzzy-valued function f ∈
L1([0, b], E ) is defined by

Iβ
+f (t) := 1

�(β)

t∫
0

(t − τ)β−1f (τ)dτ.

4. The Atangana–Baleanu fractional derivative and integral for fuzzy-valued functions

In this section, we introduce two interesting concepts: Riemann–Liouville Atangana–Baleanu fractional integral 
and Atangana–Baleanu fractional derivative of Caputo type for fuzzy-valued functions. Then, some characteristic 
properties of these fractional calculus concepts are also discussed.

Definition 4.1 ([8,9]). Let f : [0, b] → R be a function of class C1 ([0, b],R). Then, Caputo Atangana–Baleanu 
fractional derivative of order β ∈ (0, 1) of the real function f (t) is defined by

abcDβ
+f (t) := (β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′(τ )dτ,

where (β) is a normalization function such that (0) = (1) = 1 and Eβ(z) =
∞∑

k=0

zk

�(kβ + 1)
is the Mittag-Leffler 

function (see [24]). The Laplace transform of Caputo Atangana–Baleanu fractional derivative abcDβ
+f (t) is

L
{

abcDβ
+f (t)

}
(s) = (β)

(1 − β)sβ + β

[
sβL {f (t)}(s) − sβ−1f (0)

]
. (3)

Next, we will recall the concept of a new type of fractional integral associating to the Caputo Atangana–Baleanu 
fractional derivative with non-local kernel, namely Riemann–Liouville Atangana–Baleanu fractional integral.

Definition 4.2 ([8,9]). Let f : [0, b] ⊂ R → R be a function of class L1([0, b], R). Then, Riemann–Liouville 
Atangana–Baleanu fractional integral of order β ∈ (0, 1) of the real function f (t) is defined by

abIβ+f (t) := 1 − β

(β)
f (t) + β

(β)�(β)

t∫
0

(t − τ)β−1f (τ)dτ.

Next, we introduce the concept of Caputo Atangana–Baleanu fractional derivative for a fuzzy-valued function.

Definition 4.3. Assume that the function f (t) is of class C1 ([0, b],E ). Then, Caputo Atangana–Baleanu fractional 
derivative of order β ∈ (0, 1) of the function f (t) is defined by

abcD
β
+f (t) := (β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

gH (τ)dτ.

Remark 4.1. According to the properties in Proposition 8.23 of [13], Definition 4.3 implies that

abcD
β
+f (t) = (β)

1 − β

t∫
0

∞∑
k=0

(−β(t−τ)β

1−β

)k

�(kβ + 1)
f ′

gH (τ)dτ

= (β)

1 − β

∞∑
k=0

( −β
1−β

)k

�(kβ + 1)

t∫
0

(t − τ)kβf ′
gH (τ)dτ

9
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= (β)

1 − β

∞∑
k=0

( −β

1 − β

)k

Ikβ+1
+ f ′

gH (t).

Remark 4.2. The fuzzy Laplace transform for Caputo Atangana–Baleanu fractional derivative is given by

L̃
{

abcD
β
+f (t)

}
(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(β)

1 − β

sβL̃ {f (t)}(s) � sβ−1f (0)

sβ + β
1−β

if f is gH-differentiable in type 1

(−1)(β)

1 − β

sβ−1f (0) � sβL̃ {f (t)}(s)
sβ + β

1−β

if f is gH-differentiable in type 2.

Proof. See Proposition 7.1 in Appendix section. �
Proposition 4.1. Assume that the fuzzy-valued function f ∈ C1 ([0, b],E ) and its α-cuts are written in the parametric 
form [f (t)]α = [f −

α (t), f +
α (t)] for each t ∈ [0, b], α ∈ [0, 1].

(i) If f is gH-differentiable in type 1 then 
[
abcD

β
+f (t)

]α =
[
abcDβ

+f −
α (t), abcDβ

+f +
α (t)

]
.

(ii) If f is gH-differentiable in type 2 then 
[
abcD

β
+f (t)

]α =
[
abcDβ

+f +
α (t), abcDβ

+f −
α (t)

]
.

In order to illustrate the theoretical results, let us consider following example

Example 4.1. Let A1 = (0, 1, 2) be a triangular fuzzy number. Here, the fuzzy number A1 represents for the concept 
“The number is near to 1”. Then, let us consider f : [0,π] ⊂ R → E is a fuzzy-valued function defined by f (t) =
(t, t + sin t, t + 2 sin t). Note that the function f (t) can be rewritten in the compact form

f (t) = A1 sin t + t.

In addition, the function f (t) is gH-differentiable in both type 1 and type 2 on [0, π]. Indeed,

(i) The function f (t) is gH-differentiable in type 1 on the interval 
[
0, π

2

]
and its gH-derivative is given by f ′

1−gH (t) =
(1, cos t + 1, 2 cos t + 1) whose level sets are[

f ′
1−gH (t)

]α = [1 + α cos t,2 cos t + 1 − α cos t] .

(ii) The function f (t) is gH-differentiable in type 2 on the interval 
[

π
2 ,π

]
and its gH-derivative is given by 

f ′
2−gH (t) = (2 cos t + 1, cos t + 1, 1) whose level sets are[

f ′
2−gH (t)

]α = [2 cos t + 1 − α cos t,1 + α cos t] .

The plot of the function f (t) and its two types of gH-differentiability are shown in Fig. 3.
Now, we will calculate the Caputo Atangana–Baleanu fractional derivative of the fuzzy-valued function f (t) on 

the interval [0, π]. Firstly, for each t ∈ [
0, π

2

]
, by using fractional calculus and some fundamental computation (see 

Table 9.1, [42]), we have

abcD
β
+f (t) = (β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

gH (τ)dτ = (β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

1−gH (τ)dτ

is a triangular fuzzy-valued function (a1, b1, c1) := (a1(t), b1(t), c1(t)) with three components

a1 = t(β)

1 − β
Eβ,2

[−βtβ

1 − β

]
,
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Fig. 3. The function f (t) and its gH-derivatives on the interval [0,π ].

b1 = (β)

1 − β

⎛
⎜⎝tEβ,2

[−βtβ

1 − β

]
+

∞∑
k=0

(−βtβ

1−β

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

2�(kβ + 2)

⎞
⎟⎠ ,

c1 = (β)

1 − β

⎛
⎜⎝tEβ,2

[−βtβ

1 − β

]
+

∞∑
k=0

(−βtβ

1−β

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

�(kβ + 2)

⎞
⎟⎠ ,

where the confluent hypergeometric Kummer function (see [24]) is defined by

1F1(a;b; z) = �(b)

�(b − a)�(a)

1∫
0

ezs ta−1(1 − s)b−a−1ds.

Next, for each t ∈ [
π
2 ,π

]
, we have

abcD
β
+f (t) = (β)

1 − β

⎛
⎜⎝

π
2∫

0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

1−gH (τ)dτ +
t∫

π
2

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

2−gH (τ)dτ

⎞
⎟⎠ .

By similar arguments and computation, we directly get that the function abcD
β
+f (t) is also a triangular fuzzy-valued 

function of the form (a2, b2, c2) := (a2(t), b2(t), c2(t)), where

a2 =
πEβ,2

[ −βπβ

2β (1−β)

]
2

+
(2t − π)Eβ,2

[−β(2t−π)β

2β (1−β)

]
2

+
∞∑

k=0

(−β(2t−π)β

2β(1−β)

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

�(kβ + 2)
,

b2 =
πEβ,2

[ −βπβ

2β (1−β)

]
2

+
∞∑

k=0

( −βπβ

2β (1−β)

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

2�(kβ + 2)
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+
(2t − π)Eβ,2

[−β(2t−π)β

2β (1−β)

]
2

+
∞∑

k=0

(−β(2t−π)β

2β (1−β)

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

�(kβ + 2)
,

c2 =
πEβ,2

[ −βπβ

2β (1−β)

]
2

+
(2t − π)Eβ,2

[−β(2t−π)β

2β (1−β)

]
2

+
∞∑

k=0

( −βπβ

2β (1−β)

)k

[1F1 (1; kβ + 1; it) + 1F1 (1; kβ + 1;−it)]

�(kβ + 2)
.

In addition, the concept of Riemann–Liouville Atangana–Baleanu fractional integral for fuzzy-valued functions 
associated to the Atangana–Baleanu fractional derivatives with non-local kernel is given as follows:

Definition 4.4. Let f : [0, b] ⊂ R → E be a fuzzy-valued function. Then, the Riemann–Liouville Atangana–Baleanu 
fractional integral of order β ∈ (0, 1] of the function f (t) is defined by

abIβ
+f (t) := 1 − β

(β)
f (t) + β

(β)�(β)

t∫
0

(t − τ)β−1f (τ)dτ = 1 − β

(β)
f (t) + β

(β)
Iβ

+f (t).

In addition, for each α ∈ [0, 1], α-cuts of abIβ
+f (t) are 

[
abIβ

+f (t)
]α =

[
abIβ+f −

α (t), abIβ+f +
α (t)

]
.

Remark 4.3. In some special case, the Riemann–Liouville Atangana–Baleanu fractional integral is identified with the 
well-known concepts.

(i) If β = 0, the Riemann–Liouville Atangana–Baleanu fractional integral is

abI0+f (t) = 1 − 0

(0)
f (t) + 0

(0)�(0)

t∫
0

(t − τ)−1f (τ)dτ = f (t).

(ii) If β = 1, the Riemann–Liouville Atangana–Baleanu fractional integral is

abI1+f (t) = 1 − 1

(1)
f (t) + 1

(1)�(1)

t∫
0

(t − τ)1−1f (τ)dτ =
t∫

0

f (τ)dτ.

Example 4.2. Let f : [0, T ] ⊂ R → E be a fuzzy-valued function given by f (t) = (
0, eλt ,2eλt + t2

)
, where λ and T

are positive constants. Then, the Riemann–Liouville Atangana–Baleanu fractional integral of order β ∈ (0, 1) of the 
function f (t) is given by

abIβ
+f (t) = 1 − β

(β)
f (t) + β

(β)
Iβ

+f (t).

Firstly, we compute the fractional integral Iβ
+f (t) =

(
Iβ

+(0),Iβ
+(eλt ),Iβ

+(2eλt + t2)
)

, in which

Iβ
+(0) =

t∫
0

(t − τ)β−10 dτ = 0,

Iβ
+(eλt ) =

t∫
0

(t − τ)β−1eλτ dτ = tβE1,β+1 (λt) ,

12
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Iβ
+(2eλt + t2) =

t∫
0

(t − τ)β−1
(

2eλτ + τ 2
)

dτ = 2tβE1,β+1 (λt) + �(3)

�(β + 3)
tβ+3−1.

Hence, we obtain

abIβ
+f (t) = 1 − β

(β)

(
0, eλt ,2eλt + t2

)
+ β

(β)

(
0, tβE1,β+1 (λt) ,2tβE1,β+1 (λt) + 2

�(β + 3)
tβ+2

)
.

Especially, if β = 0 then we have abI0+f (t) = 1

(0)

(
0, eλt ,2eλt + t2

)= f (t) while in case β = 1, we obtain

abI1+f (t) = 1

(1)

(
0, tE1,2 (λt) ,2tE1,2 (λt) + 2

�(4)
t3
)

=
(

0,
t (eλt − 1)

λt
,

2t (eλt − 1)

λt
+ 1

3
t3
)

=
(

0,
eλt − 1

λ
,

2(eλt − 1)

λ
+ 1

3
t3
)

=
t∫

0

(
0, eλs,2eλs + s2

)
ds,

that verify the statements (i) and (ii) in Remark 4.3.

It is well-known that Newton–Leibniz formula is a required element in the derivation of fractional calculus theory. 
Hence, a formula of Newton–Leibniz type for fuzzy Caputo Atangana–Baleanu fractional derivative may enable us to 
construct significant results for fractional calculus in the Atangana–Baleanu model, too.

Theorem 4.1. Let β ∈ (0, 1) and f : [0, T ] ⊂ R → E be a gH-differentiable fuzzy-valued function with no switch-
ing point on [0, T ]. Then, Riemann–Liouville Atangana–Baleanu fractional integral and Caputo Atangana–Baleanu 
fractional derivative of the function f (t) satisfy the following Newton–Leibniz formula

abIβ
+
(

abcD
β
+f (t)

)
= f (t) �gH f (0), t ∈ [0, T ].

Proof. Since the function f is gH-differentiable with no switching point on the interval [0, T ], it implies that f is 
either gH-differentiable in type 1 or gH-differentiable in type 2 on this interval.

Case 1: If f is gH-differentiable in type 1 then for each t ∈ [0, T ] and α ∈ [0, 1], we have[
abIβ

+
(

abcD
β
+f (t)

)]α =
[
abIβ+

(
abcDβ

+f −
α (t)

)
, abIβ+

(
abcDβ

+f +
α (t)

)]
.

Here, by the definition of Riemann–Liouville Atangana–Baleanu fractional integral together with the series formula 
for Caputo Atangana–Baleanu fractional derivative, we have

abIβ+
(

abcDβ
+f −

α (t)
)

= 1 − β

(β)

abcDβ
+f −

α (t) + β

(β)
Iβ+

(
abcDβ

+f −
α (t)

)

=
∞∑

k=0

( −β

1 − β

)k

Ikβ+1
+

(
f −

α

)′
(t) + β

1 − β
Iβ+

[ ∞∑
k=0

( −β

1 − β

)k

Ikβ+1
+

(
f −

α

)′
(t)

]

=
∞∑

k=0

( −β

1 − β

)k

Ikβ+1
+

(
f −

α

)′
(t) −

( −β

1 − β

) ∞∑
k=0

( −β

1 − β

)k

I(k+1)β+1
+

(
f −

α

)′
(t)

=
∞∑

k=0

( −β

1 − β

)k

Ikβ+1
+

(
f −

α

)′
(t) −

∞∑
k=0

( −β

1 − β

)k+1

I(k+1)β+1
+

(
f −

α

)′
(t)

= I1+
(
f −

α

)′
(t) = f −

α (t) − f −
α (0).

13
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By doing similar arguments, we also receive abIβ+
(

abcDβ
+f +

α (t)
)

= f +
α (t) − f +

α (0). Hence, the level sets of the 

expression abIβ
+
(

abcD
β
+f (t)

)
are given by

[
abIβ

+
(

abcD
β
+f (t)

)]α = [
f −

α (t) − f −
α (0), f +

α (t) − f +
α (0)

]
for all α ∈ [0,1],

which implies that

abIβ
+
(

abcD
β
+f (t)

)
= f (t) � f (0). (4)

Case 2: If f is gH-differentiable in type 2 then for each t ∈ [0, T ] and α ∈ [0, 1], we have[
abIβ

+
(

abcD
β
+f (t)

)]α =
[
abIβ+

(
abcDβ

+f +
α (t)

)
, abIβ+

(
abcDβ

+f −
α (t)

)]
.

By similar computation as in Case 1, we also receive

abIβ+
(

abcDβ
+f −

α (t)
)

= f −
α (t) − f −

α (0)

abIβ+
(

abcDβ
+f +

α (t)
)

= f +
α (t) − f +

α (0),

which implies that 
[
abIβ

+
(

abcD
β
+f (t)

)]α = (−1) 
[
f −

α (0) − f −
α (t), f +

α (0) − f +
α (t)

]
for all α ∈ [0, 1]. Therefore, we 

directly obtain

abIβ
+
(

abcD
β
+f (t)

)
= (−1) (f (0) � f (t)) . (5)

By combining equations (4) and (5), we receive abIβ
+
(

abcD
β
+f (t)

)
= f (t) �gH f (0), which completes the proof. �

5. The existence and uniqueness of mild solution for fuzzy initial value problem (FIVP) under Caputo 
Atangana–Baleanu fractional gH-differentiability

Next, we investigate the existence and uniqueness of mild solution of the following fuzzy initial value problem to 
fuzzy fractional differential system under the Caputo Atangana–Baleanu fractional gH-differentiability{

abcD
β
+x(t) = F (t, x(t)) , t ∈ J = [0, T ]

x(0) = x0,
(6)

where abcD
β
+x(t) denotes for Caputo Atangana–Baleanu fractional derivative of state vector x(t), initial condition 

x0 ∈ E n and F : [0, T ] × E n → E n is a fuzzy vector-valued function that satisfies following assumptions:

(HF1) The fuzzy vector-valued function F(·, ξ) : [0, T ] → E n is strongly measurable for each ξ ∈ E n and the 
function F(t, ·) : E n → E n is continuous for a.e. t ∈ [0, T ];

(HF2) There exists a matrix M0 such that Dn

(
F(t, ξ),0

)≤ M0Dn(ξ, 0) for all ξ ∈ E n.
(HF3) There exists a matrix M1 such that Dn

(
F(t, ξ),F(t, ξ)

)≤ M1Dn(ξ, ξ) for all ξ , ξ ∈ E n.

In the following, we recall from [28] the space of all continuous fuzzy vector-valued functions on [0, T ].

Definition 5.1 ([28]). Denote C ([0, T ],E n) = {ϕ : [0, T ] → E n : ϕ(t) is continuous on [0, T ]}. According to Long 
et al. [28], it is well-known that the space C ([0, T ],E n) is a generalized complete metric space endowed with the 
generalized weighted metric

Hλ (ϕ,ψ) = sup
[0,T ]

{
Dn(ϕ(t),ψ(t))e−λt

}
,

for all ϕ, ψ ∈ C ([0, T ],E n) and λ > 0 is big enough parameter that will be specified later.

14
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In this section, for simplicity in representation, we assume that all components of the fuzzy vector-valued func-
tion x(t) have the same type of gH-differentiability with no switching point in whole time domain J = [0, T ]. The 
following theorem plays a key role in defining the mild solution of (FIVP).

Theorem 5.1. Assume that x ∈ C ([0, T ],E n) satisfies the fractional differential system (6).

(i) If x is gH-differentiable in type 1 then it satisfies following integral equation

x(t) = x0 + 1 − β

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ. (7)

(ii) If x is gH-differentiable in type 2 then it satisfies following integral equation

x(t) = x0 � (−1)

⎡
⎣1 − β

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ

⎤
⎦ . (8)

Proof. For each t ∈ [0, T ], by applying fuzzy Laplace transform to both sides of the fractional fuzzy differential 
system of (6), we have

L̃
{

abcD
β
+x(t)

}
(s) = L̃ {F(t, x(t))} (s). (9)

Then, by using Proposition 7.1, the above equation can be rewritten in two following forms depending on the types of 
gH-differentiability of the fuzzy-valued function x(t).

Case 1: If x is gH-differentiable in type 1 on [0, T ] then (9) becomes

(β)

1 − β

sβL̃ {x(t)}(s) � sβ−1x(0)

sβ + β
1−β

= L̃ {F(t, x(t))} (s).

Thus, we obtain

sβL̃ {x(t)}(s) � sβ−1x0 = (1 − β)sβ + β

(β)
L̃ {F(t, x(t))} (s)

⇔ L̃ {x(t)}(s) = 1

s
x0 + (1 − β)sβ + β

sβ(β)
L̃ {F(t, x(t))} (s)

⇔ L̃ {x(t)}(s) = 1

s
x0 + (1 − β)

(β)
L̃ {F(t, x(t))} (s) + β

sβ(β)
L̃ {F(t, x(t))} (s)

⇔ L̃ {x(t)}(s) = 1

s
x0 + (1 − β)

(β)
L̃ {F(t, x(t))} (s) + β

(β)
L̃

{
tβ−1

�(β)

}
(s)L̃ {F(t, x(t))} (s).

Then, the convolution theorem of Laplace transform can be applied to obtain

L̃ {x(t)}(s) = 1

s
x0 + (1 − β)

(β)
L̃ {F(t, x(t))} (s) + β

�(β)(β)
L̃

⎧⎨
⎩

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ

⎫⎬
⎭ (s).

Finally, by applying inverse Laplace transform, it yields

x(t) = x0 + (1 − β)

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ.

15
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Case 2: If x is gH-differentiable in type 2 on [0, T ] then (9) becomes

(−1)(β)

1 − β

sβ−1x(0) � sβL̃ {x(t)}(s)
sβ + β

1−β

= L̃ {F(t, x(t))} (s).

The above equality is equivalent to

sβ−1x(0) � sβL̃ {x(t)}(s) = (1 − β)sβ + β

(β)
L̃ {F(t, x(t))} (s)

⇔ sβL̃ {x(t)}(s) = sβ−1x0 � (1 − β)sβ + β

(β)
L̃ {F(t, x(t))} (s)

⇔ L̃ {x(t)}(s) = 1

s
x0 � (1 − β)sβ + β

(β)sβ
L̃ {F(t, x(t))} (s)

⇔ L̃ {x(t)}(s) = 1

s
x0 �

[
(1 − β)

(β)
L̃ {F(t, x(t))} (s) + β

(β)sβ
L̃ {F(t, x(t))} (s)

]
.

Next, by applying the convolution theorem of Laplace transform, we obtain

L̃ {x(t)}(s) = 1

s
x0 �

⎡
⎣ (1 − β)

(β)
L̃ {F(t, x(t))} (s) + β

�(β)(β)
L̃

⎧⎨
⎩

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ

⎫⎬
⎭ (s)

⎤
⎦ .

Then, the inverse Laplace transform is applied to show that if x is gH-differentiable in type 2 then

x(t) = x0 �
⎡
⎣ (1 − β)

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ

⎤
⎦ .

Hence, the proof is completed. �
Remark 5.1. Based on the concept of generalized Hukuhara difference, two integral equations (7) and (8) can be 
rewritten in following form

x(t) �gH x0 = 1 − β

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ.

Now, we introduce a suitable concept of mild solutions of (FIVP).

Definition 5.2.

(i) A continuous fuzzy vector-valued function x : [0, T ] ⊂ R → E n is said to be a mild solution of type (i) of (FIVP) 
if it satisfies the integral equation (7).

(ii) A continuous fuzzy vector-valued function x : [0, T ] ⊂ R → E n is said to be a mild solution of type (ii) of (FIVP) 
if it satisfies the integral equation (8).

Next, the existence and uniqueness of mild solution in type 1 of the problem (6) is presented.

Theorem 5.2. Under the assumptions (HF1), (HF2) and (HF3), the fuzzy initial value problem (6) has exactly one 
mild solution in type 1 defined on [0, T ] provided that the spectral radii of the matrices (1−β)

(β)
M0 and (1−β)

(β)
M1 are all 

less than 1.
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Proof. Define an operator P : C ([0, T ],E n) → C ([0, T ],E n) by

P[x](t) = x0 + 1 − β

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ, t ∈ [0, T ].

It is easy to see that P is a linear operator mapping C ([0, T ],E n) into itself. Then, the unique existence of mild 
solution in type 1 of (FIVP) is equivalent to the fixed point problem for the operator P .

Firstly, since the spectral radius of the matrix (1−β)
(β)

M0 is less than 1, it implies that the matrix (1−β)
(β)

M0 also 

converges to zero matrix. In addition, since the elements of matrix G(λ,β)
�(β)(β)

M0 can be as small as desired, the matrix 
(1−β)�(β)+G(λ,β)

�(β)(β)
M0 also converges to zero matrix.

Now, let us denote r =
[
In − (1−β)�(β)+G(λ,β)

�(β)(β)
M0

]−1
Dn

(
x0,0

)
and

�r = {
x ∈ C

([0, T ],E n
) :Hλ

(
x,0

)≤ r
}
,

where In is the unit matrix of order n. Now, we proceed the proof by following steps:

Step 1. The operator P satisfies P (�r) ⊆ �r . Indeed, for t ∈ [0, T ] and x ∈ �r , we have

Dn(P[x](t),0) = Dn

⎛
⎝x0 + 1 − β

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ,0

⎞
⎠

≤ Dn

(
x0,0

)+ 1 − β

(β)
Dn

(
F(t, x(t)),0

)+ β

�(β)(β)

t∫
0

(t − τ)β−1Dn

(
F(τ, x(τ )),0

)
dτ

≤ Dn

(
x0,0

)+ 1 − β

(β)
M0Dn

(
x(t),0

)+ β

�(β)(β)

t∫
0

(t − τ)β−1M0Dn

(
x(τ),0

)
e−λτ eλτ dτ

≤ Dn

(
x0,0

)+ 1 − β

(β)
M0Hλ

(
x,0

)
eλt + β

�(β)(β)

⎛
⎝ t∫

0

(t − τ)β−1eλτ dτ

⎞
⎠M0Hλ

(
x,0

)

< Dn

(
x0,0

)+ 1 − β

(β)
M0Hλ

(
x,0

)
eλt + eλt

�(β)(β)

(
2

λ
β
4

+ 1

λ1+ β
2

)
M0Hλ

(
x,0

)
.

Here, we use the estimation 

t∫
0

(t −τ)β−1eλτ dτ <
eλt

β
G(λ, β), where λ > 0, G(λ, β) =

(
2

λ
β
4

+ 1

λ1+ β
2

)
and t ∈ [0, T ]

(see Lemma 7.1 in [28]). Next, by dividing both sides by eλt and taking supremum for t ∈ [0, T ], we receive

Hλ

(
P[x],0

)
< Dn

(
x0,0

)+
[

1 − β

(β)
+ G(λ,β)

�(β)(β)

]
M0Hλ

(
x,0

)
≤ Dn

(
x0,0

)+ (1 − β)�(β) + G(λ,β)

�(β)(β)
M0r ≤ r,

which means that the operator P maps �r into itself.
Moreover, the operator P : �r → �r is a continuous operator. Indeed, assume that {xn} ⊂ �r is a sequence such 

that xn ⇒ x ∈ �r . Here, for each t ∈ [0, T ], we have

P[xn](t) = x0 + 1 − β

(β)
F(t, xn(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, xn(τ ))dτ.

For all 0 ≤ s ≤ t ≤ T , the hypothesis (HF1) implies that

17
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(t − τ)β−1F (τ, xn(τ )) → (t − τ)β−1F(τ, x(τ )) as n → ∞.

Next, by employing hypotheses (HF1) and Lebesgue’s dominated theorem, we have

Dn (P[xn](t),P[x](t)) ≤ 1 − β

(β)
Dn (F(t, xn(t)),F(t, x(t)))

+ β

�(β)(β)

t∫
0

(t − s)β−1Dn (F (τ, xn(τ )) ,F(τ, x(τ ))) dτ

tends to �0 ∈ Rn as n → ∞, which follows that the operator P is continuous on �r .

Step 2. The operator P is a contraction. For this aim, let x, x ∈ �r be arbitrary. Then, it suffices to show that there 
exists a convergent to zero matrix M such that

Hλ (P[x],P[x]) <MHλ (x, x) .

Indeed, for each t ∈ [0, T ], we have

Dn (P[x](t),P[x](t))

≤ 1 − β

(β)
Dn (F(t, x(t)),F(t, x(t))) + β

�(β)(β)

t∫
0

(t − τ)β−1Dn (F(τ, x(τ )),F(τ, x(τ ))) dτ

≤ 1 − β

(β)
M1Dn (x(t), x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1M1Dn (x(τ ), x(τ )) dτ

= 1 − β

(β)
M1Dn (x(t), x(t)) e−λt eλt + β

�(β)(β)

t∫
0

(t − τ)β−1M1Dn (x(τ ), x(τ )) e−λτ eλτ dτ

≤ 1 − β

(β)
M1Hλ (x, x) eλt + β

�(β)(β)

⎛
⎝ t∫

0

(t − τ)β−1eλτ dτ

⎞
⎠M1Hλ (x, x)

<
1 − β

(β)
M1Hλ (x, x) eλt + eλtG(λ,β)

�(β)(β)
M1Hλ (x, x) .

Then, by dividing both sides by eλt and taking supremum for t ∈ [0, T ], we immediately obtain

Hλ (P[x],P[x]) <
(1 − β)�(β) + G(λ,β)

�(β)(β)
M1Hλ (x, x) .

Since the assumption that the spectral radius of the matrix (1−β)
(β)

M1 is less than 1 and the elements of G(λ,β)
�(β)(β)

M1 can 
be as small as desired, we directly deduce that the matrix

(1 − β)�(β) + G(λ,β)

�(β)(β)
M1 = (1 − β)

(β)
M1 + G(λ,β)

�(β)(β)
M1

converges to zero matrix.
Hence, it follows that the operator P is a generalized contraction. Finally, by applying contraction principle, we 

can conclude that the operator P has a unique fixed point x∗ ∈ �r that is the unique mild solution of the fuzzy initial 
value problem (6). �

The rest of this section is devoted to prove the existence and uniqueness of mild solution in type 2 of (FIVP). For 
each x ∈ C([0, T ], E n), we define
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F [x](t) = x0 �
⎡
⎣ (1 − β)

(β)
F(t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1F(τ, x(τ ))dτ

⎤
⎦ . (10)

Denote Ĉ ([0, T ],E n) = {x ∈ C([0, T ],E n) : the equality (10) holds for all t ∈ [0, T ]}. By doing similar arguments as 

in [28], we can also prove that 
(
Ĉ ([0, T ],E n) ,Dn

)
is also a complete metric space.

Theorem 5.3. Assume that:

(i) The hypotheses (HF1), (HF2) and (HF3) are fulfilled.
(ii) The set Ĉ ([0, T ],E n) �= ∅.

(iii) The spectral radii of the matrices (1−β)
(β)

M0 and (1−β)
(β)

M1 are all less than 1.

Then, the fuzzy initial value problem (6) has exactly one mild solution in type 2 defined on [0, T ].

Proof. By doing similar arguments as in Theorem 5.2, the existence and uniqueness of mild solution in type 2 of 
(FIVP) is equivalent to the solvability of the functional equation F [x] = x. Hence, it suffices to show that the operator 
F has a unique fixed point x∗ ∈ Ĉ ([0, T ],E n). Adapting to Theorem 5.2, we directly obtain the operator F is a 
contraction mapping and hence, it has a unique fixed point x∗ in Ĉ ([0, T ],E n), that is the unique mild solution in 
type 2 of (FIVP). �
Remark 5.2. In this section, we only need to consider that all components of fuzzy mild solution x(t) have the 
same type of gH-differentiability without switching point on the time domain J = [0, T ]. If components of the 
fuzzy mild solution x(t) = (x1(t), . . . , xn(t))

� have different types of gH-differentiability on J , the existence 
and uniqueness result of Theorem 5.2 and 5.3 are still guaranteed. Indeed, no loss generality, we assume that 
the fuzzy-valued functions x1(t), x2(t), . . . , xp(t) are gH-differentiable in type 1 and the fuzzy-valued functions 
xp+1(t), xp+2(t), . . . , xn(t) are gH-differentiable in type 2. Then, we define the solution operator P[x] as a vector-
valued function P[x] = (P1[x], . . . ,Pn[x])�, where

Pi[x](t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi
0 + 1 − β

(β)
Fi (t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1Fi (τ, x(τ ))dτ for i = 1, . . . , p

xi
0 �

⎡
⎣ (1 − β)

(β)
Fi (t, x(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1Fi (τ, x(τ ))dτ

⎤
⎦ for i = p + 1, . . . , n.

Since the inequalities d∞(u + v, w + e) ≤ d∞(u, w) + d∞(v, e) and d∞(u � v, w � e) ≤ d∞(u, w) + d∞(v, e) are 
fulfilled for all u, v, w, e ∈ E then for all i = 1, n, we always get

d∞ (Pi[x](t)) ≤ d∞
(
xi

0, 0̂
)

+ 1 − β

(β)
d∞

(
Fi (t, x(t)), 0̂

)
+ β

�(β)(β)

t∫
0

(t − τ)β−1d∞
(

Fi (τ, x(τ )), 0̂
)

dτ.

Hence, it implies that the proof of Theorem 5.2 and 5.3 are still true. However, in this case, we cannot conclude that 
the obtained solution is a mild fuzzy solution of type 1 or type 2.

6. Numerical solution of the fuzzy fractional SIQR model for the attacking of viruses in WSNs

In Section 2, we proposed a fuzzy initial value problem for the fuzzy fractional SIQR model (1) of virus propa-
gation with the initial conditions (2). Now, we propose a novel algorithm for numerically solving the fuzzy initial 
value problem (1)–(2) using the Caputo Atangana–Baleanu fractional derivative. Here, for simplicity, we denote 
X(t) = (

S(t) I (t) Q(t) R(t)
)t

, X0 = (
S0 I0 Q0 R0

)t ∈ E 4. Then, the problem (1)–(2) can be rewrit-
ten in following compact form
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{

abcD
β
+X(t) = G(t,X(t))

X(0) = X0.
(11)

Here, the fuzzy vector function G(t, X(t)), given by

G(t,X(t)) = (
G1(t,X(t)) G2(t,X(t)) G3(t,X(t)) G4(t,X(t))

)
satisfies all hypotheses (HF1), (HF2) and (HF3). Based on Theorem 5.1, mild solution of the initial value problem 
(11) can be given in one of following forms

X(t) = X0 + 1 − β

(β)
G(t,X(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1G(τ,X(τ))dτ, (12)

X(t) = X0 � (−1)

⎡
⎣1 − β

(β)
G(t,X(t)) + β

�(β)(β)

t∫
0

(t − τ)β−1G(τ,X(τ))dτ

⎤
⎦ , (13)

where � is well-known Hukuhara difference and the function (β) = 1 − β + β
�(β)

satisfies (0) = (1) = 1.

6.1. Numerical solution of the fuzzy fractional initial value problem (1)–(2)

In the following, we develop a numerical method to numerically solve the integral equation (12). After that, a 
similar method will be also applied to obtain the numerical scheme for numerically solving the integral solution (13). 
First of all, we consider a uniform grid

� = {tk = kh : k = 0,1, . . . ,N} ,

where N is positive integer such that h = T
N

.
For each α ∈ [0, 1], the α-cuts form of the expression (12) is given by

X−
α (t) = X−

0,α + 1 − β

(β)
G(t,X−

α (t)) + β

�(β)(β)

t∫
0

(t − τ)β−1G(τ,X−
α (τ ))dτ,

X+
α (t) = X+

0,α + 1 − β

(β)
G(t,X+

α (t)) + β

�(β)(β)

t∫
0

(t − τ)β−1G(τ,X+
α (τ ))dτ.

Then, based on the combination of the two-step Lagrange polynomial and the fundamental theorem of fractional 
calculus, the iterative scheme to implement the numerical solution in type 1 of the fuzzy fractional initial value 
problem (11) is given as follows:

For each n = 0, 1, 2, . . ., denote X−
α,n = X−

α (tn), X+
α,n = X+

α (tn). Then, the terms X−
α,n+1 and X+

α,n+1 can be deter-
mined by approximating following integral equality

X−
α (tn+1) = X−

0,α + 1 − β

(β)
G(tn,X

−
α,n) + β

�(β)(β)

n∑
k=0

tk+1∫
tk

(tn+1 − τ)β−1G(τ,X−
α (τ ))dτ, (14)

X+
α (tn+1) = X+

0,α + 1 − β

(β)
G(tn,X

+
α,n) + β

�(β)(β)

n∑
k=0

tk+1∫
tk

(tn+1 − τ)β−1G(τ,X+
α (τ ))dτ. (15)

Next, we estimate the integrals on the right-hand sides of (14) and (15) over the interval [tk, tk+1] by using the 
two-step Lagrange interpolation polynomial

G(τ,X∗
α(τ )) ∼= G(tk+1,X

∗
α,k+1)

h
(τ − tk) − G(tk,X

∗
α,k)

h
(τ − tk+1),

20
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where “∗” denotes for the signs “+” or “–”. Then, by applying above approximation, we have

tk+1∫
tk

(tn+1 − τ)β−1G(τ,X∗
α(τ ))dτ

∼= G(tk+1,X
∗
α,k+1)

h

tk+1∫
tk

(tn+1 − τ)β−1(τ − tk)dτ − G(tk,X
∗
α,k)

h

tk+1∫
tk

(tn+1 − τ)β−1(τ − tk+1)dτ.

By changing variable s = tn+1 − τ , we receive

tk+1∫
tk

(tn+1 − τ)β−1(τ − tk)dτ = hβ+1

β(β + 1)

[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]
tk+1∫
tk

(tn+1 − τ)β−1(τ − tk+1)dτ = hβ+1

β(β + 1)

[
(n − k)β+1 + (n − k + 1)β(n − k + β)

]
.

Hence, it yields

tk+1∫
tk

(tn+1 − τ)β−1G(τ,X∗
α(τ ))dτ ∼= hβG(tk+1,X

∗
α,k+1)

β(β + 1)

[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]

− hβG(tk,X
∗
α,k)

β(β + 1)

[
(n − k)β+1 + (n − k + 1)β(n − k + β)

]
. (16)

By replacing the integral terms on the right-hand sides of integral equations (14)–(15) by the estimation (16), we 
immediately obtain the approximate solution

X−
α,n+1 = X−

0,α + 1 − β

(β)
G(tn,X

−
α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

−
α,k+1) − C

β

k,nG(tk,X
−
α,k)

]
, (17)

X+
α,n+1 = X+

0,α + 1 − β

(β)
G(tn,X

+
α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

+
α,k+1) − C

β

k,nG(tk,X
+
α,k)

]
, (18)

where the coefficients Cβ
k,n, C

β

k,n are given by

C
β
k,n = β

(β)�(β + 2)

[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]
C

β

k,n = β

(β)�(β + 2)

[
(n − k)β+1 + (n − k + 1)β(n − k + β)

]
.

Finally, the numerical solution in type 1 of the fuzzy initial value problem (11) is established from two difference 
systems (17) and (18).

Remark 6.1 (error estimation). In order to establish the error estimation while approximating the fractional differ-
ential equation using our suggested method, we assume that the vector X∗

α(·) ∈ C2([0, T ], R4) for all α ∈ [0, 1], 
which follows that the second-order partial derivative 

∂2G(t,X∗
α(t))

∂t2 is continuous on [0, T ] and hence, the function 

∂2G(t,X∗
α(t))

∂t2 is bounded on this interval.
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In the approximation (16), we estimate the integral term 

tk+1∫
tk

(tn+1 − τ)β−1G(τ, X∗
α(τ ))dτ by using two-step La-

grange interpolation polynomial. Hence, the error of integral term’s estimation is given by∥∥∥∥G(τ,X∗
α(τ )) −

[
G(tk+1,X

∗
α,k+1)

h
(τ − tk) − G(tk,X

∗
α,k)

h
(τ − tk+1)

]∥∥∥∥≤ Mn

2! (τ − tk)(tk+1 − τ),

where Mn = sup
[0,tn+1]

d∞
(

∂2
gH G(τ,X(τ))

∂τ 2 ,0

)
and τ ∈ [tk, tk+1].

Hence, the error in our approximation is given by

Rα
n = β

�(β)(β)

n∑
k=0

tk+1∫
tk

(tn+1 − τ)β−1 Mn

2! (τ − tk)(tk+1 − τ)dτ.

Note that the mapping τ �→ (tn+1 − τ)β−1(τ − tk) is positive on the interval [tk, tk+1]. Thus, by using Mean Value 
Theorem for integral, there exists ck ∈ [tk, tk+1]

Rα
n = β

�(β)(β)

n∑
k=0

Mn

2
(tk+1 − ck)

tk+1∫
tk

(tn+1 − τ)β−1(τ − tk)dτ

= hβ+1β

2�(β + 2)(β)

n∑
k=0

Mn(tk+1 − ck)
[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]

≤ Mnh
β+2β

2�(β + 2)(β)

n∑
k=0

[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]

= Mnh
β+2β

2�(β + 2)(β)

n∑
k=0

{
(n + 1 − k + β)

[
(n + 1 − k)β − (n − k)β

]− β(n + 1 − k)β
}
.

By using Proposition 7.3, it yields (n + 1 − k)β − (n − k)β ≤ (n + 1 − k − (n − k))β = 1 and hence,

Rα
n ≤ Mnh

β+2β

2�(β + 2)(β)

n∑
k=0

[
(n + 1 − k + β) − β(n + 1 − k)β

]

= Mnβ

2�(β + 2)(β)

[
n(n + 1)

2
+ nβ − (n + 1)β

β

]
hβ+2.

Hence, we can see that the error bound of our proposed numerical scheme is Chβ+2 that is similar to the result in [51]
and it shows the faster convergent rate with the result in [21]. Indeed, in the literature [21], the authors’ approach gave 
the error bound of approximation with convergent rate C̃h. Let us recall that the error of approximation comes from 
the approximation of G(t, X(t)) by its two-step Lagrange interpolating polynomial. The smaller error is expected to 
be attained with higher-order interpolating polynomial.

Remark 6.2. By similar method, we also obtain the numerical scheme for the numerical solution in type 2 of the 
fuzzy fractional initial value problem (11):

X−
α,n+1 = X−

0,α + 1 − β

(β)
G(tn,X

+
α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

+
α,k+1) − C

β

k,nG(tk,X
+
α,k)

]
,

X+
α,n+1 = X+

0,α + 1 − β

(β)
G(tn,X

−
α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

−
α,k+1) − C

β

k,nG(tk,X
−
α,k)

]
.
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Remark 6.3 (Numerical algorithm). Now, we summarize the above approximate scheme and give a numerical algo-
rithm to implement the numerical solution of the problem (1)–(2) as follows:

Algorithm 1: The proposed numerical method
Input: The fractional order β – Number of partitions N – The parameters in Table 1 – The initial and final 

time – The initial condition X0.
Output: The numerical solution of the FFIVP (11)
Data: Initialization

1 a = 0; T = 50; // set up starting and ending points
2 h = (T − a)/N ; // set up step size
3 (β) = 1 − β + β

�(β)
; // set up normalization function

/* preallocation size */

4 x = zeros(1, N); y = zeros(1, N); z = zeros(1, N); v = zeros(1, N);
5 X = zeros(4, N); // The solution vector X = (x, y, z, v)t

/* Numerical solution of the problem (11) */

6 for n = 1, 2, . . . , N do

7 C
β
k,n = β

(β)�(β + 2)

[
(n + 1 − k)β+1 − (n − k)β(n + 1 − k + β)

]
;

8 C
β

k,n = β

(β)�(β + 2)

[
(n − k)β+1 + (n − k + 1)β(n − k + β)

]
;

9 X−
α,n+1 = X−

0,α + 1 − β

(β)
G(tn, X∗

α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

∗
α,k+1) − C

β

k,nG(tk,X
∗
α,k)

]
;

10 X+
α,n+1 = X+

0,α + 1 − β

(β)
G(tn, X∗

α,n) + hβ

n∑
k=0

[
C

β
k,nG(tk+1,X

∗
α,k+1) − C

β

k,nG(tk,X
∗
α,k)

]
;

// for k = 0, 1, 2, . . . , n, α ∈ [0, 1]
/* Plot the solution */

11 plot(t, X) // plot the numerical solution

6.2. Numerical simulation

In this section, the numerical simulations are carried out by using Matlab program and some different cases of 
parameters in Table 1 to show the uncertain behavior versus time of numerical solution of the fractional SIQR model 
(1) and the effect of the fractional derivative β on the transmission of viruses in WSNs for β ∈ {0.3, 0.6, 0.9}.

(a) We simulate the uncertain behavior of mild solution of the fuzzy fractional initial value problem for the fuzzy 
fractional SIQR model (1) with parameters

A = 3 μ = 0.45 λ = 0.55 ν = 0.25

ω = 0.02 σ = 0.02 γ = 0.001 η = 0.005

and uncertain initial data S0 = (1.3,1.5,1.7), I0 = (2.5,2.75,3.0), Q0 = (1.0,1.25,1.5) and R0 =
(0.01,0.02,0.03). Fig. 4 presents the time series of numerical solution of the fuzzy fractional SIQR model 
for some different values of fractional order β . For the above parameters, we can directly compute the basic re-
production number R corresponding to the considered model is R = 0.814 < 1, which implies that the virus-free 
equilibrium E1 is globally asymptotically stable. In fact, from Fig. 4, we can see that the infectious compo-
nent I (t) of the solution tends to be vanished as the time is increasing, that means the spread will die out or 
equivalently, viruses can be removed completely out the WSNs.
Three figures (Figs. 5–7) show the dynamical behaviors of the fuzzy fractional SIQR model (1) for some different 
values of fractional order β .

(b) We simulate the uncertain behavior of mild solution of the fuzzy fractional initial value problem for the fuzzy 
fractional SIQR model (1) with parameters
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Fig. 4. Time series of numerical solution of the fuzzy fractional SIQR model. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 5. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.3.

A = 2 μ = 0.45 λ = 0.52 ν = 0.1

ω = 0.05 σ = 0.1 γ = 0.75 η = 0.075

and uncertain initial data S0 = (2.3,2.5,2.7), I0 = (3.6,3.75,3.8), Q0 = (0.015,0.025,0.035) and R0 =
(3.9,4.0,4.2). Fig. 8 presents the time series of numerical solution of the fuzzy fractional SIQR model for some 
different values of fractional order β . With the above parameters, we can directly compute the basic reproduction 
number R corresponding to the considered model is R = 1.524 > 1, that means the spread won’t die out. In 
fact, by Fig. 8, we can see that the infectious component I (t) is asymptotic to some positive values as the time 
increasing. This means that the spread of viruses remains in the network.
Three figures (Figs. 9–11), we show the dynamical behaviors of the fuzzy fractional SIQR model (1) for some 
different values of fractional order β .
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Fig. 6. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.6.

Fig. 7. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.9.

7. Appendix

In the following, we introduce Table 2 of fractional calculus’s notations.
Next, we recall the concept of Laplace transform for fuzzy-valued functions proposed by Allahviranloo and 

Barkhordari [5]. Let f : [0, ∞) → E be a continuous fuzzy-valued function such that f (t)e−st is integrable on [0, ∞). 
Then, the fuzzy Laplace transform of f (t) is defined by

F (s) = L̃ {f (t)}(s) =
∞∫

0

f (t)e−st dt,

whose α-cuts are given by 
[
L̃ {f (t)}(s)

]α = [
L {f −

α (t)}(s),L {f +
α (t)}(s)] where α ∈ [0, 1] and the functions 

L {f −
α (t)}(s), L {f +

α (t)}(s) are classical Laplace transforms of real-valued functions.
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Fig. 8. Time series of numerical solution of the fractional SIQR model.

Fig. 9. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.3.

Remark 7.1. In the multidimensional case, if f : [0, ∞) → E m is a fuzzy vector-valued function, defined by t �→
f (t) = (

f1(t) f2(t) · · · fm(t)
)t

, then the fuzzy Laplace transform of f is known as the vector of fuzzy Laplace 
transforms of all its components, i.e.,

L̃ {f (t)}(s) = (
L̃ {f1(t)}(s) L̃ {f2(t)}(s) · · · L̃ {fm(t)}(s))t .

In the following, we present the Laplace transform of Caputo Atangana–Baleanu fractional derivative

Proposition 7.1. Assume that f ∈ C1 ([0, b],E ). Then, we have
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Fig. 10. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.6.

Fig. 11. The dynamical behavior of the fuzzy fractional SIQR model with β = 0.9.

Table 2
Some used notations.

Notation Description Location

Iβ
+f (t) The Riemann–Liouville fractional integral of order β of a fuzzy-valued function f (t) Definition 3.4

abcDβ
+f (t) The Caputo Atangana–Baleanu fractional derivative of order β of a real function f (t) Definition 4.1

abIβ+f (t) The Riemann–Liouville Atangana–Baleanu fractional integral of order β of a real function f (t) Definition 4.2

abcD
β
+f (t) The Caputo Atangana–Baleanu fractional derivative of order β of a fuzzy-valued function f (t) Definition 4.3

abIβ
+f (t) The Riemann–Liouville Atangana–Baleanu fractional integral of order β of a fuzzy-valued function f (t) Definition 4.4

(i) If f is gH-differentiable in type 1 then

L̃
{

abcD
β
+f (t)

}
(s) = (β)

(1 − β)sβ + β

[
sβL̃ {f (t)} (s) � sβ−1f (0)

]
.
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(ii) If f is gH-differentiable in type 2 then

L̃
{

abcD
β
+f (t)

}
(s) = (−1)(β)

(1 − β)sβ + β

[
sβ−1f (0) � sβL̃ {f (t)} (s)

]
.

Proof. For each α ∈ [0, 1], the α-cuts of L̃
{

abcD
β
+f (t)

}
(s) is given in following compact form

[
L̃

{
abcD

β
+f (t)

}
(s)

]α =
[
L

{(
abcDβ

+f
)−

α
(t)

}
(s),L

{(
abcDβ

+f
)+

α
(t)

}
(s)

]
.

(i) If f is gH-differentiable in type 1 then according Definition 3.2 and Definition 4.3, it is true that[
abcD

β
+f (t)

]α =
[
abcDβ

+f −
α (t), abcDβ

+f +
α (t)

]
.

Hence, we directly deduce that[
L̃

{
abcD

β
+f (t)

}
(s)

]α =
[
L

{
abcDβ

+f −
α (t)

}
(s),L

{
abcDβ

+f +
α (t)

}
(s)

]
.

Next, by applying Laplace transform (3), we receive

L
{

abcDβ
+f −

α (t)
}

(s) = (β)

(1 − β)sβ + β

(
sβL

{
f −

α (t)
}
(s) − sβ−1f −

α (0)
)
,

L
{

abcDβ
+f +

α (t)
}

(s) = (β)

(1 − β)sβ + β

(
sβL

{
f +

α (t)
}
(s) − sβ−1f +

α (0)
)
.

Thus, it implies that the below equality holds for all α ∈ [0, 1][
L

{
abcDβ

+f −
α (t)

}
(s),L

{
abcDβ

+f +
α (t)

}
(s)

]
= (β)

(1 − β)sβ + β

[
sβL

{
f −

α (t)
}
(s) − sβ−1f −

α (0), sβL
{
f +

α (t)
}
(s) − sβ−1f +

α (0)
]
.

On the other hand, since the parametric form 
[
sβL

{
f −

α (t)
}
(s) − sβ−1f −

α (0), sβL
{
f +

α (t)
}
(s) − sβ−1f +

α (0)
]

holds 
for all α ∈ [0, 1] then we can write[

sβL
{
f −

α (t)
}
(s) − sβ−1f −

α (0), sβL
{
f +

α (t)
}
(s) − sβ−1f +

α (0)
]

=
[
sβL̃ {f (t)} (s) � sβ−1f (0)

]α

.

Hence, we receive 
[
L̃

{
abcD

β
+f (t)

}
(s)

]α = (β)

(1 − β)sβ + β

[
sβL̃ {f (t)} (s) � sβ−1f (0)

]α

for all α ∈ [0, 1].
(ii) Using the assumption that f is gH-differentiable in type 2, we have[

abcD
β
+f (t)

]α =
[
abcDβ

+f +
α (t), abcDβ

+f −
α (t)

]
.

As a corollary of the Laplace transform (3) and by similar arguments as in Case (i), it is true that[
L̃

{
abcD

β
+f (t)

}
(s)

]α =
[

(β)

(1 − β)sβ + β

(
sβL

{
f +

α (t)
}
(s) − sβ−1f +

α (0)
)

,

(β)

(1 − β)sβ + β

(
sβL

{
f −

α (t)
}
(s) − sβ−1f −

α (0)
)]

=
[

(−1)(β)

(1 − β)sβ + β

(
sβ−1f −

α (0) − sβL
{
f −

α (t)
}
(s)

)
,

(−1)(β)

(1 − β)sβ + β

(
sβ−1f +

α (0) − sβL
{
f +

α (t)
}
(s)

)]
,

for all α ∈ [0, 1], which implies that the H-difference 
(−1)(β)

(1 − β)sβ + β

(
sβ−1f (0) � sβL̃

{
f +

α (t)
}
(s)

)
exist and hence, 

we can write
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[

(−1)(β)

(1 − β)sβ + β

(
sβ−1f (0) � sβL̃

{
f +

α (t)
}
(s)

)]α

=[
(−1)(β)

(1 − β)sβ + β

(
sβ−1f −

α (0) − sβL
{
f −

α (t)
}
(s)

)
,

(−1)(β)

(1 − β)sβ + β

(
sβ−1f +

α (0) − sβL
{
f +

α (t)
}
(s)

)]
.

Thus, it follows that if f is gH-differentiable in type 2 then

[
L̃

{
abcD

β
+f (t)

}
(s)

]α =
[

(−1)(β)

(1 − β)sβ + β

(
sβ−1f (0) � sβL̃

{
f +

α (t)
}
(s)

)]α

for all α ∈ [0,1],

which completes our proof. �
Proposition 7.2. Assume that f : [0, ∞) → E is a continuous fuzzy-valued function. Then, we have

L̃

⎧⎨
⎩

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f (τ)dτ

⎫⎬
⎭ (s) = sβ−1

sβ + β
1−β

L̃ {f (t)} (s).

Proof. For each t > 0, denote g(t) = Eβ

[
−β tβ

1−β

]
. Then, the convolution of f (t) and g(t) is given by

(f ∗ g) (t) =
t∫

0

f (τ)g(t − τ)dτ =
t∫

0

Eβ

[
−β

(t − τ)β

1 − β

]
f (τ)dτ.

By using the Laplace transform of fuzzy convolution in [5], we directly obtain

L̃

⎧⎨
⎩

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f (τ)dτ

⎫⎬
⎭ (s) = L̃

{
Eβ

[
−β

tβ

1 − β

]}
(s)L̃ {f (t)} (s).

From [50], it is true that L̃
{
Eβ

[
−β tβ

1−β

]}
(s) = sβ−1

sβ + β
1−β

. Hence, the proof is completed. �

Remark 7.2. Based on Proposition 7.2, we can also imply the conclusion of Proposition 7.1. Indeed, for each f ∈
C1 ([0, b],E ) and for all t ∈ [0, b], we have

abcD
β
+f (t) := (β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

gH (τ)dτ.

Then, by applying fuzzy Laplace transform for both sides of above formula, it yields

L̃
{

abcD
β
+f (t)

}
(s) = L̃

⎧⎨
⎩(β)

1 − β

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

gH (τ)dτ

⎫⎬
⎭ (s)

= (β)

1 − β
L̃

⎧⎨
⎩

t∫
0

Eβ

[
−β

(t − τ)β

1 − β

]
f ′

gH (τ)dτ

⎫⎬
⎭ (s).

Next, by using Proposition 7.2 and the Laplace transform for gH-derivatives in [5], we obtain

L̃
{

abcD
β
+f (t)

}
(s) = (β)

1 − β

sβ−1

sβ + β
1−β

L̃
{
f ′

gH (t)
}

(s)
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=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(β)

1 − β

sβL̃ {f (t)}(s) � sβ−1f (0)

sβ + β
1−β

if f is gH-differentiable in type 1

(−1)(β)

1 − β

sβ−1f (0) � sβL̃ {f (t)}(s)
sβ + β

1−β

if f is gH-differentiable in type 2.

Proposition 7.3. For each α ∈ (0, 1) and 0 < y ≤ x, we have xα − yα ≤ (x − y)α .

Proof. For each α ∈ (0, 1) and 0 < y ≤ x, consider a real-valued function h(t) = (t −y)α − tα on the interval [y, ∞). 
Since the function h′(t) = α(t − y)α−1 − αtα−1 ≥ 0 for all t ≥ y, it implies that the function h(t) is increasing on 
[y, ∞). Hence, we obtain

h(x) = (x − y)α − xα ≥ h(y) = −yα,

or equivalently, (x − y)α ≥ xα − yα . The proof is completed. �
8. Conclusions

In this paper, our aim is to investigate a mathematical SIQR model for propagation of viruses in WSNs with the 
rate of change in sense of Atangana–Baleanu Caputo fuzzy fractional gH-differentiability. To achieve this goal, we 
introduce a new concept of fractional derivative with non-local and non-singular kernel of fuzzy-valued functions. 
Here, the non-local kernel is built by the Mittag-Leffler function and the proposed fractional derivative is based 
upon the Caputo sense. Moreover, some related analysis properties of the proposed derivative and integral are also 
discussed. Next, the new derivative is applied to model the propagation of viruses in WSNs with fuzzy data and 
parameters. A theoretical result about the existence and uniqueness of mild solution of the FIVP is shown. In addition, 
the attack behavior of virus is then analytically solved via fuzzy Laplace transform and numerically solved via a 
proposed numerical method. In further research, it is planned to verify the applicability of the proposed fractional 
derivatives in different epidemic models in WSNs and some related problem such as stability, stabilizability or control 
problem.
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a b s t r a c t

In order to investigate the effectiveness of quarantine strategy and the heterogeneity
of scale-free network on epidemic spreading, this paper focuses on the investigation
of a new fractional epidemiology model, namely fractional SE1E2IQR epidemic model.
Our proposed model introduces an isolation class (Q) and an exposure class with two
distinct compartments E1 (Type 1-exposed) and E2 (Type 2-exposed). The dynamics of
the network-based fractional-order SE1E2IQR epidemic model are studied from the view-
point of stability analysis and bifurcation. Firstly, by using the next-generation method,
we derive the basic reproductive ratio R0 of the proposed epidemic model, which plays
an important role in determining not only the unique existence of epidemic equilibrium
point E∗ but also the locally asymptotically stability of malware-free equilibrium point
E0. However, the paper points out that the condition R0 < 1 is not sufficient to eliminate
the malware from the network. In addition, the direction of bifurcation at R0 = 1 is also
presented. Furthermore, by graphical simulations and computations, we can evaluate
the importance of parameters in the basic reproductive ratio R0 and show that the
quarantine treatment plays a key role in controlling the epidemic disease.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Recently, since many systems in nature and society can be described by using complex network models, there have
been various considerable works studying the structures and dynamics of complex networks with interdisciplinary
applications such as traffic control, environmental and habitat monitoring, communication systems, or biological systems,
etc. A scale-free network is an important classical complex network, that can better describe many real-world systems
such as social networks [1], the World Wide Web [2], wireless sensor networks [3], security network [4] or the Internet [5].
This work investigates Wireless Sensor Networks (WSNs) from the viewpoint of complex network theory in order to
discuss the treatments to protect the network from the malicious object’s attack and prolong the lifetime of the network.
Note that sensor nodes are battery-operated, located in remote, complex terrain and it is obvious that the battery
replacement is impractical. Moreover, each operation of WSNs requires thousands of sensor nodes that will be deployed, a
WSN-specific parameter such as the energy loss should be considered. Therefore, when describing the network structure
of WSNs, some recent works took into account the energy-aware problem such as Jian et al. [3] and Zhu et al. [6]. In
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this work, based on the Barabási Albert scale-free network, we proposed using a special kind of scale-free network,
namely Energy-Aware Barabási Albert (EABA) scale-free network to characterize the network properties of WSNs. Because
sensor nodes are energy-constrained devices, they generally have weak defense capabilities and become attractive targets
for malware such as worms, viruses or trojans, etc. In addition, since sensor network uses wireless communication for
information exchange, hackers and advertisers can easily exploit the flaws of systems and target a particular sensor node
through which to introduce malware programs in WSNs. Next, this infected node starts to propagate in the network
gradually from that point to its adjacent nodes. There are many negative influences of malware attacks on WSNs such
as quickly exhausting the energy of sensor nodes, slowing down the operation in sensor networks or growing network
traffic, etc. To protect the security and integrity of WSNs against malware attacks, we first need to clearly understand
the dynamic characteristics of the malware and their infection mechanism. Some researchers found that the propagation
pattern of epidemic disease in biological models and social models is quite similar to the propagation in the complex
network generated by malware programs. And mathematical modeling has become a powerful tool for not only analyzing
the propagation, evaluating the various prevention and control programs but also identifying the important data that need
to be collected to make forecasts. Especially, mathematical modeling of epidemic dynamics on the complex network has
recently attracted an increasing amount of attention frommany mathematicians and researchers. Unlike classical epidemic
models which assume the same rate of disease-causing contacts, epidemic models with network-based take into account
the different degree of nodes, i.e., the heterogeneity contact rates, and complex topology of potential contact. There are
many realistic examples of mathematical epidemic models in complex networks. Some literature can be found in [7–12].

It is well-known that fractional derivatives and fractional integrals, which appeared early in the 19th century, have
the non-local property, i.e., these derivatives and integrals can present both the past information and distributed effect
of any physical systems. This proves the great ability of fractional derivatives and integrals to represent complex real-
world phenomena more accurately and efficiently than ordinary calculus. During a long history of development, numerous
studies have proved the considerable advantages of fractional calculus with various disciplines of the real world. In recent
years, besides the rapid popularization of fractional calculus, a lot of detailed studies on fractional dynamical systems
and related problems have been carried out by many researchers and have achieved noticeable results in various fields
of basic sciences and engineering due to some main advantages of fractional calculus such as memory properties of
fractional derivatives or better simulations in fractal materials or viscoelasticity environments, see [7,8,13–18]. Due to
the fact that malware takes advantage of the process of signal transmission between sensor nodes to inject malware code
in the network and signal transmissions are known as memory and hereditary processes that often have the significant
dependence on the flexibility of the environment, the history of functions or the texture and characteristic properties of
the material, that are difficult to describe correctly by mean of integer order differential systems. In addition, fractional
calculus is also an important tool for the study of some hereditary properties of compartments in epidemic models. In
this work, based on the advantages of fractional calculus in the modeling of epidemic disease transmission on complex
networks, we generalize classic epidemic models by replacing the integer-order derivative on the left side with fractional
derivatives in Caputo sense. Then, the obtained model can produce very good estimation, as well as interesting equations
from a mathematical point of view. However, we must face the natural question that does the change in the order of
derivatives automatically establish consistent models w.r.t. the model’s parameters? Interesting work was published
in [19] proved that this cannot happen in general. Recently, there has been a lot of literature studying the fractional
epidemiology theory and its applications in computer networks. For example, see Dubey et al. [20], Dong et al. [7], Graef
et al. [8], Hassouna et al. [21], Mishra et al. [11,22] and Naim et al. [23].

Due to the fact that target areas of real-world applications in the WSNs always have complex terrains and irregular
climates, the information transmission’s speed in WSNs is profoundly influenced by geographical and climatic factors.
That is the reason why we should take into account the influence of external natural factors when studying the infection
of malware on the networks. On the other hand, since natural phenomena in reality always contain vagueness and
uncertainty, it is obvious that we must accept the presence of uncertainties in our proposed models. Additionally, in
the wireless sensor network, different network clusters will perform different sensing, measuring, and collecting tasks,
and hence, the information’s propagation speed is obviously uneven, which is also directly affected by the infection of
malicious codes in the network. This factor is often expressed in the sense of a node’s number of state changes and often
cannot be measured precisely but expressed through language variables. Moreover, the infectivity of a susceptible node
also depends on the density of infectious nodes in its neighbors, that is, not every susceptible node that contacts an
infectious node, will become immediately an infectious node. In fact, in order to express the term of the density of nodes
in the network, one cannot use exact values, but they are usually expressed through linguistic variables such as high,
moderate, low. The appearance of uncertain factors in our considered model suggests introducing the use of fuzzy set
theory. Initiated by Zadeh [24] in the early 1960s, fuzzy set theory has gained a lot of significant achievements in a wide
range of every aspect of scientific areas, see [24,25]. Recently, there have been lots of computing tools developed to make
use of fuzzy set theory in fuzzy control, where the experience of humans is valid. Fuzzy control is based on fuzzy sets, fuzzy
logic, and fuzzy inference, which plays a key role in many real-world applied problems, see [25,26]. In practice, researchers
often consider the uncertainty in the form of fuzzy sets. Thus, fuzzy logic and fuzzy set theory become a powerful tools
for expressing inaccurate facts and making our studies agree with real-life situations. In the epidemiology theory, there
have some interesting literature that applies fuzzy logic and fuzzy sets to study epidemic models. For instance, Dong
et al. [7,13] applied fuzzy analysis and fuzzy fractional differential equations to study the fuzzy fractional SEIR epidemic
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models, fuzzy fractional SIQR epidemic model and discuss some interesting related problems such as solvability, optimal
control, numerical solutions. The modified SIR epidemic model with fuzzy transmission rate and fuzzy control based on
fuzzy sets were studied in [27–29]. However, to the best of our knowledge, there has a little work on the fuzzy epidemic
model on heterogeneous complex networks, see [30] for instance, in which the network structure directly affects the
malware infection. This means due to the heterogeneity of complex networks, the level of being infected and transmission
rate in different network clusters are un-similar. This is an important motivation for the classification of three classes of
infected node: Type 1- Exposed, Type 2-Exposed and Infectious in this work. Here, the fuzzy logic is applied to take into
account the network’s heterogeneity and estimate the rate of infection.

For the convenience of the reader, we briefly summarize the structure of this paper as follows: In Section 2, we review
some recent relevant developments and publications in the study of the mathematical epidemic model on the complex
network to motivate the research. After that, the main contributions of this paper are briefly summarized in Section 3,
while Section 4 is devoted to formulating a fractional network-based SE1E2IQR epidemic model with a fuzzy rule-based
transmission rate. In Section 5, we present a detailed study on the analysis of the proposed epidemic model consisting
of the positiveness of solution, the existence of equilibrium points, the basic reproductive ratio R0, the stability analysis
and the bifurcation analysis. In order to illustrate the correctness of theoretical results, Section 6 gives some numerical
simulations and graphical representations. At last, the Conclusions in Section 7 and Appendix are given.

2. Related works

Recently, there have been a considerable number of studies in the epidemiological models on complex networks. In
the following, we briefly review some literature related to this work:

• Graef et al. [8] proposed a fractional-order SIR epidemic model with demography to examine the user adoption and
abandonment of online social networks, where adoption is analogous to infection, and abandonment is analogous to
recovery. After that, they discussed the existence and uniqueness of non-negative solutions of the proposed model as
well as the existence and stability of its equilibrium points by using the Jacobian matrix technique and the Lyapunov
function method. In particular, a threshold Rα

0 was established to prove that the user-free equilibrium E0 is locally
asymptotically stable if Rα

0 < 1 and the user-prevailing equilibrium E∗ is globally asymptotically stable if Rα
0 > 1.

The theoretical results were then demonstrated by a case study of fitting the considered model to some Instagram
user data. However, it is a fact that in reality, the network of Instagram users is not well-mixed and it should be
taken into consideration the heterogeneity of the network for a better description.

• The paper [31] of Huang et al. introduced a network-based SIQRS epidemic model with demographics and vaccination
to investigate the epidemic disease on complex heterogeneous networks. After obtaining the basic reproduction
number R0, the permanence of disease and the globally asymptotic stability of disease-free equilibrium are analyt-
ically proved. In addition, the unique endemic equilibrium is shown to be globally attractive by using a monotone
iterative method. In another work, Huo et al. [9] proposed an epidemiological model with three compartments to
study the disease widespread on a scale-free network. This work introduced a network-based SIRS epidemic model
with infection age and relapse. A striking result of this work is the use of fluctuation lemma and Lyapunov functional
method to prove the globally asymptotic stability of endemic equilibrium point corresponding to basic reproductive
ratio R0. Li et al. [32] also proposed a three compartmental epidemic model to study the malware spreading in a
complex heterogeneous network by introducing a network-based SIRS epidemic model with birth and death rates.
This work proved that the dynamics of the network are completely dependent on the basic reproductive ratio R0.
In particular, the disease-free equilibrium is globally attractive if R0 < 1 and unstable if otherwise. Moreover, the
unique disease-free equilibrium is globally asymptotically stable if R0 > 1. Finally, numerical simulations were given
to demonstrate theoretical results. In conclusion, we can see that all three papers took into consideration the degree
distribution of network nodes, which makes their studies agree with the property of real-world networks.

• Li and Yousef [33] studied a network-based SIR epidemic model with a saturated treatment function, that plays
an important significance in characterizing the real-world situation that the number of patients that needs to be
treated may exceed the treatment capacity. For this aim, a threshold value R0, which plays an important significance
in the stability of a disease-free equilibrium, is obtained. Next, the author investigated the bifurcation at R0 = 1 and
established a necessary condition for the bifurcation directions at R0 = 1. The bifurcation direction (backward or
forward) and the stability of equilibria were then discussed to determine whether the disease is eliminated on the
network. A novelty of this work is the use of a saturated treatment function instead of a linear treatment function,
which can be applied for our considered model in future work.

• In order to study the effect of anti-virus treatments on epidemic spreading, an SIS model with limited treatment
capacity on adaptive networks was introduced in [34]. Firstly, the author derived the existence condition of backward
bifurcation or forward bifurcation at the disease-free equilibrium. Then, they discussed the effect of the bifurcation
direction occurring at the disease-free equilibrium on the bi-stability of endemic equilibria and the elimination
of epidemic disease of the model. The obtained results are interesting and can be extended to the case of a
network-based model.
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• Recently, Mishra et al. have applied mathematical modeling to study some classes of epidemic diseases. In the
paper [11], Mishra et al. formulated the worm’s attack on wireless sensor networks by formulating an epidemic
model, namely the SEIRS-V model. Moreover, this work also considered the effectiveness of vaccination for the
treatment of epidemic diseases on the network. Two main results of this work are the computation of basic
reproductive ratio R0 and the globally asymptotic stability of equilibrium points. Another study of Mishra et al. was
presented in [22]. Indeed, the work [22] introduced an epidemic model based on the biological predator–prey model,
in which three compartments: Susceptible, Infectious, and Recovered are predators while the Terminally infected
compartment plays the predator role. After that, equilibrium points of the considered model were calculated and
applied to investigate the stability analysis of equilibrium points. However, despite of studying the epidemic model
in complex networks, the heterogeneity of complex networks has not been taken into account in both [11,22].

• In recent years, there have been some studies on the investigation of mathematical epidemic models with fuzziness
factors. For instance, in the work [7], Dong et al. considered a modified SIR model with quarantine state to model
the worm propagation in Wireless sensor network with fuzzy parameters, namely fuzzy fractional SIQR epidemic
model. Here, the proposed epidemic model was governed by a system of fuzzy fractional differential equations
under gH-differentiability. Then, by using the theory of fuzzy dynamical systems and fuzzy analysis, the authors
studied the solvability of the proposed epidemic model and then, discussed the effect of isolation with stifling
the infection of worms. An optimal control problem for a fractional SEIR epidemic model with fuzzy parameters
was proposed in [13]. Here, under the horizontal membership function approach and granular differentiability for
fuzzy-valued function, the authors established a necessary condition for the optimality of the proposed optimal
control problem. Moreover, the obtained theoretical results were then applied to study the widespread of COVID-
19 pandemic. The epidemic models with fuzzy transmission can be found in [27–29], in which the work [28]
formulated a simple SIS epidemic model with a linear treatment control. The novelty of this work is that both
disease transmission rate and treatment function were considered as fuzzy numbers. Then, the concepts of the
fuzzy expected value of infected individuals and fuzzy basic reproduction numbers were proposed and examined.
Moreover, based on the malware load on the model, a threshold condition of the pathogen was given at which
the SIS epidemic model undergoes a transcritical bifurcation. Nandi et al. [29] studied a fuzzy SIS epidemic model,
where both the disease transmission rate and treatment function are considered in saturated forms and contained
fuzziness. The fuzzy expected value of infected individuals and fuzzy basic reproduction numbers were determined
and investigated to examine the nature of the proposed epidemic model. Moreover, a threshold condition of the
pathogen was derived at which the epidemic model undergoes a backward bifurcation. However, the works [7,13,27–
29] only consider the heterogeneous property of epidemic models in sense of fuzziness of model parameters, but
the network’s heterogeneity has not been taken into consideration. In recent work, Hosseini and Zandvakili [30]
investigated a mathematical SEIRS-C model to describe the rumor spreading on the social networks based on fuzzy
logic-based. Then, this paper presented some initial results consisting of basic reproductive ratioR0 and local stability
of disease-free equilibrium point.

3. The contributions of this work

Motivated by aforesaid, this work is devoted to presenting detailed results on the analysis of a network-based
epidemic model on the scale-free network with fractional order derivative and fuzzy rule-based interaction constant.
Unlike epidemic models introduced in the preceding works, our proposed epidemic model consists of a compartment of
quarantine and two types of exposure compartments: Type 1-Exposed and Type 2-Exposed. Based on this assumption, we
propose a six compartmental epidemic model, SE1E2IQR to evaluate both the effectiveness of quarantine strategy and the
influence of underlying heterogeneity of complex networks to the malware infection. Here, the network’s heterogeneity
is expressed by the node’s connectivity and node’s state change, which are taken into consideration in the model by
using fuzzy logic. This formulation is the novelty of our work, which helps the considered epidemic model better fit with
real-world situations. The main achievements of our work can be highlighted as follows:

(i) Propose a new fractional epidemic model with latent periods and quarantine in the form of mean-field reaction rate
equations, namely fractional SE1E2IQR epidemic model, for analyzing the malware widespread in heterogeneous
networks. In addition, for a better description of the realistic properties of Wireless Sensor Network, we considered
WSNs as an Energy-Aware Barabási Albert scale-free network, that takes into account the energy consumption of
network’s nodes. Especially, the number of potentially disease-causing interactions are determined by using fuzzy
logic theory and the compartment of exposure states is divided into Type 1-Exposed state and Type 2-Exposed
state to better describe the realistic situation of exposure.

(ii) It is a fact that the possibility for malware transmission is not uniform on heterogeneous complex networks, i.e., the
transmission possibility of nodes with different degrees is un-similar. Moreover, depending upon the characteristic
property of the network, the node’s state change also affects the transmission. That is the reason why in this work,
the effects of node’s degree and node’s state change in malware propagation are taken into account by using an
appropriate Mamdani multi-input single-output (MISO) fuzzy system with 9 fuzzy rules, which helps us estimate
the fuzzy rule-based interaction constant Mq.
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Fig. 1. The five compartments of the SEIQR epidemic model.

(iii) Based on the advantages of fractional calculus in the modeling of epidemic models, we proposed a network-based
epidemic model with fractional derivatives in Caputo sense. The difficulties in the proof’s technique when dealing
with the fractional epidemic models compared with the integer one can be overcome by applying the fractional
comparison principle, fractional stability theory and some basic tools of fractional calculus.

(iv) By applying the next-generation matrix method, the basic reproductive ratio R0 corresponding to the fractional
SE1E2IQR epidemic model is calculated. In addition, this work showed that the degree-dependent rate of newly
born nodes does not affect the basic reproductive ratio R0. Next, this work discussed the key role of the quantity
R0 − 1 in the investigation of the asymptotic stability of the malware-free equilibrium point E0 and the unique
existence of epidemic equilibrium point E∗.

(v) The direct Lyapunov’s method with a suitable Lyapunov function V(x(t)) is used to discussing the necessary condition
for the globally asymptotic stability of the malware-free equilibrium point E0. The obtained condition claims that
the condition R0 < 1 is not good enough to completely eliminate the disease in the network.

(vi) It is undeniable that the effects of quarantine treatments play a vital role in stifling the widespread of epidemic
diseases. However, there have been several works that considered the effectiveness of quarantine on the disease
controlling on the complex heterogeneous networks, see [10,31]. By the formula (7), we find that the epidemic
threshold R0 significantly depends on not only the topology of complex networks but also quarantine rates
ω1, ω2, c. The higher the values quarantine rates are, the smaller value the basic reproductive ratio R0 gets, which
means that the malware spreading is controlled.

4. The fractional SE1E2IQR epidemic model on wireless sensor network

In this section, our aim is to characterize the infection of malware programs in wireless sensor networks and investigate
the effectiveness of quarantine strategy against widespread malware. For this aim, we assume that the total population
of sensor nodes is finite and classify the network into six following potential compartments (see Fig. 1).

In many classical epidemic models, we often suppose that all individuals mix uniformly and the rates of disease-causing
contacts of all individuals are the same. In the mathematical viewpoint, this homogeneity certainly makes the analysis
and evaluation simpler and more tractable; however, this assumption contradicts reality. Indeed, in many network-
based models such as Facebook, World Wide Web or Wireless sensor network, etc., that make use of complex network
topology of potential contacts, it is a fact that the number of links (connections) of different nodes in the networks may
be not similar and of course, the effect of malicious object’s attack to these nodes are also not the same. Therefore,
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Fig. 2. The flowchart of malware propagation among the six compartments: Susceptible (S), Type 1-Exposed (E1), Type 2-Exposed (E2), Infectious
(I), Quarantine (Q), Recovered (R).

the heterogeneity and the difference in the importance of nodes need to be taken into account when modeling the
mathematical epidemic models for the malware’s attack in a scale-free network. To deal with the heterogeneity in the
complex networks, we classify the total population of nodes into n groups based on the number of links a node has per
unit time (i.e., the degree distribution of a node). This means that the nodes in the kth group have the same degree, say
k, for 1 ≤ k ≤ n, and they are assumed to be dynamically equivalent.

Let us denote Sk(t), E1,k(t), E2,k(t), Ik(t), Qk(t) and Rk(t) by the densities of susceptible nodes, type 1-exposed nodes,
type 2-exposed nodes, infectious nodes, quarantined nodes and recovered nodes with degree k at time t , respectively for
k = 1, 2, . . . , n. In addition, the function Nk(t) stands for the number of nodes with degree k at time t . Then, we directly
get that

S(t) =

p∑
k=1

P(k)Sk(t), E1(t) =

p∑
k=1

P(k)E1,k(t), E2(t) =

p∑
k=1

P(k)E2,k(t),

I(t) =

p∑
k=1

P(k)Ik(t), Q (t) =

p∑
k=1

P(k)Qk(t), R(t) =

p∑
k=1

P(k)Rk(t),

are the global average densities of the six epidemic compartments, respectively, where P(k) is the probability that a
randomly chosen node has degree k. The infection of malware program in the network can be described in the following
flowchart.

It is a fact that the speed of information transmission on the heterogeneous complex networks is profoundly influenced
by geographical and climatic factors, which means that when studying the infection of malware on the networks, we
need to consider the influence of natural factors to the transmission processes. In addition, the possibility for malware
transmission is not uniform for nodes in complex networks, i.e., the transmission possibility of nodes with a different
degree is un-similar. Moreover, depending upon the characteristic property of the network, the node’s state change also
affects to the transmission. For instance, in a sensor network, different network clusters will perform different sensing,
measuring, and collecting tasks, and hence, the information’s propagation speed is obviously uneven, which is also directly
affect the infection of malicious codes in the network (see Fig. 3). This factor is often expressed in the node’s number of
state changes and often cannot be measured precisely but expressed through language variables. Moreover, the infectivity
of a susceptible node also depends on the density of infectious nodes in its neighbors, that is, not every susceptible node
that contacts an infectious node, will immediately become an infectious node. Furthermore, it is easy to see that in order
to express the term of density, one cannot use exact values that are usually expressed through linguistic variables such
as high, moderate, low. In this work, we propose to use a linguistic variable q (q ∈ {high, moderate, low}) to represent
the uncertainties occurring in the model and try to take these factors into account in our considered epidemic model.

In the following, we try to assign three linguistic terms “low”, “moderate”, “high”with fuzzy values corresponding to
fuzzy rules and use the fuzzy inferences to take these rules into the proposed epidemic model in the form of the infection
constant Mq. Let us consider three fuzzy numbers A1 = (0, 0, 0.2, 0.3), A2 = (0.3, 0.5, 0.7) and A3 = (0.7, 0.8, 1, 1)
to represent for three linguistic terms “low”, “moderate”, “high”, respectively. In addition, we use two triangular fuzzy
numbers B1 = (0, 0.3, 0.6) and B2 = (0.4, 0.7, 1.0) to determine that the output of combined rules will belong to Type
1-Exposure state or Type 2-Exposure state. (see Fig. 4).

Let x denote for the density of infectious nodes, y denote for the rate of node’s state changes and z denote for the state
of each rule’s output. Now, we propose a Mamdani MISO fuzzy system with nine rules corresponding to our proposed
model:
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Fig. 3. Applications of Wireless Sensor Network in sensing, collecting and transmitting data.

Fig. 4. The fuzzy sets for linguistic terms “low”, “moderate”, “high”.

Rule 1: If x is “LOW” and y is “LOW” then z is Type 1-Exposure state.

Rule 2: If x is “LOW” and y is “MODERATE” then z is Type 1-Exposure state.

Rule 3: If x is “MODERATE” and y is “LOW” then z is Type 1-Exposure state.

Rule 4: If x is “MODERATE” and y is “MODERATE” then z is Type 2-Exposure state.

Rule 5: If x is “LOW” and y is “HIGH” then z is Type 2-Exposure state.

Rule 6: If x is “MODERATE” and y is “HIGH” then z is Type 2-Exposure state.

Rule 7: If x is “HIGH” and y is “LOW” then z is Type 2-Exposure state.

Rule 8: If x is “HIGH” and y is “MODERATE” then z is Type 2-Exposure state.

Rule 9: If x is “HIGH” and y is “HIGH” then z is Type 2-Exposure state.

Example 4.1. In the following, we assume that the density of infectious nodes x0 = 0.35 and the rate of node’s state
change y0 = 0.65 then the firing strength of these rules can be given by

f1 = 0 f2 = 0.365 ∧ 0.57 = 0.365 f3 = 0
f4 = 0.37 ∧ 0.57 = 0.37 f5 = 0.365 ∧ 0.665 = 0.365 f6 = 0.37 ∧ 0.665 = 0.37
f7 = 0 f8 = 0 f9 = 0.

7
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Fig. 5. The output of the fuzzy inference system.

The output of fuzzy inference system is obtained by using following operations

C(z) =

[
4⋁

i=1

(fi ∧ B1(z))

]
∨

[
9⋁

i=5

(fi ∧ B2(z))

]
.

Then, the output C(z) can be graphically expressed in Fig. 5.
which can be characterized in the following formula

C(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10
3

z if 0 ≤ z ≤ 0.1095

0.365 if 0.1095 < z ≤ 0.427

−5z +
5
2

if 0.427 < z ≤ 0.46

10
3

x −
4
3

if 0.46 < z ≤ 0.511

0.37 if 0.511 < z ≤ 0.889

−
10
3

z +
10
3

if 0.889 < z ≤ 1

0 otherwise.

Then, by using the center of gravity (COG) defuzzification, the constant Mq is given by

Mq =

∫ 1
0 zC(z)dz∫ 1
0 C(z)dz

≈ 0.633.

According to the flowchart given in Fig. 2, the interactions among these six compartments can be described by using
the following rules:

(r1) The rate of newly born nodes with degree k is degree-dependent and given by Λ(k).

(r2) A sensor node may also log out the network at a natural rate µ.

(r3) When the epidemic disease is permanent on the network, a susceptible node with degree k can be infected by its
neighbor infectious nodes. However, this susceptible node will not immediately become infectious, but it goes into
one of exposure states (E1) or (E2). It becomes a type 1-exposed sensor node with a rate σ1(k), while if the density
of neighbor infectious nodes reaches the threshold (determined by fuzzy rules), it goes into the type 2-exposed
state at a rate σ2(k).

(r4) Each type 1-exposed node is assumed to go into type 2-exposure state (E2) at a rate η if the number of type 1-exposed
individual’s infectious neighbor reaches the threshold determined by fuzzy rules.

(r5) With the use of detection programs, exposed nodes are isolated from the network and moved to Quarantined state
(Q) with the rate ω1 and ω2, respectively.

(r6) Each type 2-exposed node is assumed to become infectious at a rate ω3.

(r7) The viral detection programs find out infectious source, and move them out of the network at a rate of c. These
nodes are then changed into the quarantined state.

8
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Table 1
Some used parameters.
Para. Description Unit

Λ(k) The degree-dependent rate of newly born nodes with PUT
degree k

c The rate of being isolated of nodes in infectious state PUT
µ The natural death rate of nodes PUT
σ1(k) The degree-dependent infection rate from susceptible PUT

state to type 1-exposed nodes
σ2(k) The degree-dependent infection rate from susceptible PUT

state to type 2-exposed state
ω1 The isolated rate of type 1-exposed nodes PUT
ω2 The isolated rate of type 2- exposed state PUT
ω3 The rate for a type 2-exposed node becomes infectious PUT
θ The rate of being susceptible of recovered nodes PUT
r1 The recovery rate of infectious nodes PUT
r2 The recovery rate of quarantined nodes PUT
η The transition rate from the type 1-exposed state to the PUT

type 2-exposed state

PUT: per unit time.

(r8) Each node in Quarantined state (Q) can be temporarily immune and get recovered at a rate r2.

(r9) With the actions of anti-malware programs, each infectious node gets recovered with the rates r1. In addition, each
recovered sensor node can become susceptible towards the possible attack of malware at a rate θ .

For simplicity, we summarize the used parameters and their descriptions in Table 1.
Now, we formulate a mathematical model that describes the malware propagation between six compartments (S), (E1),

(E2), (I), (Q), and (R) in a Wireless sensor network along with the data transmission. In this work, we take into account
the non-local property with memory effects of data diffusion and aim to accurately represent this characteristic in the
rate of change of the proposed model. Thus, we suggest using the Caputo fractional-order derivative to establish the
differential model for malware propagation. Based on the above hypotheses and notations, the SE1E2IQR epidemic model
can be described by the following dynamical mean-field reaction rate equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

β
t Sk(t) = Λ(k) − (σ1(k) + σ2(k)) Sk(t)Θ(t) − µSk(t) + θRk(t)

C
0D

β
t E1,k(t) = σ1(k)Sk(t)Θ(t) − (η + ω1 + µ) E1,k(t)

C
0D

β
t E2,k(t) = σ2(k)Sk(t)Θ(t) − (µ + ω2 + ω3) E2,k(t) + ηE1,k(t)

C
0D

β
t Ik(t) = ω3E2,k(t) − (µ + c + r1)Ik(t)

C
0D

β
t Qk(t) = ω1E1,k(t) + ω2E2,k(t) + cIk(t) − (r2 + µ)Qk(t)

C
0D

β
t Rk(t) = r1Ik(t) + r2Qk(t) − (µ + θ )Rk(t),

(1)

subject to the initial conditions

Sk(0) = S0k , E1,k(0) = E0
1,k, E2,k(0) = E0

2,k, Ik(0) = I0k , Qk(0) = Q 0
k , Rk(0) = R0

k, (2)

where σ1(k), σ2(k) are the degree-dependent infection rates given by σ1(k) = σ1k, σ2(k) = σ2k, respectively and the other
parameters are assumed to be positive. In addition, we assume that the initial number of nodes with degree k is given by

Nk(0) = Sk(0) + E1,k(0) + E2,k(0) + Ik(0) + Qk(0) + Rk(0) =
Λ(k)
µ

. (3)

By summing up six fractional differential equations of the system (1), we obtain

C
0D

β
t
(
Sk + E1,k + E2,k + Ik + Qk + Rk

)
(t) = Λ(k) − µ

(
Sk + E1,k + E2,k + Ik + Qk + Rk

)
(t),

or equivalently,

C
0D

β
t Nk(t) = Λ(k) − µNk(t). (4)

By taking the Laplace transform for the fractional differential Eq. (4), we get

sβL {Nk(t)}(s) − sβ−1Nk(0) =
Λ(k)
s

− µL {Nk(t)}(s).

9
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Table 2
Some notations and abbreviations.
Notation Description Notation Description

MFE Malware-free equilibrium α4 µ + θ

EE Epidemic equilibrium α5 r1 + c + µ

α1 ω1 + µ + η α6,k ησ1(k) + α1σ2(k)
α2 ω2 + ω3 + µ α7,k α2α5σ1(k)ω1 + α5α6,kω2 + cα3α6,kω3

α3 r2 + µ bk Λ(k)
µ

which follows that L {Nk(t)}(s) =
sβ−1

sβ + µ
Nk(0) +

Λ(k)sβ−(1+β)

sβ + µ
. Then, by taking the inverse Laplace transform and the

initial condition (3), we receive

Nk(t) =
Λ(k)
µ

Eβ (−µtβ ) + Λ(k)tβEβ,β+1(−µtβ )

By applying the transformation Eβ1,β2 (z) = zEβ1,β1+β2 (z)+
1

Γ (β2)
for β1 = β , β2 = 1 and z = −µtβ , we directly get that

Nk(t) =
Λ(k)
µ

Eβ (−µtβ ) +
Λ(k)
µ

[
1 − Eβ,1(−µtβ )

]
=

Λ(k)
µ

:= bk,

which means that the total number of nodes with degree k is only degree-dependent.
The function Θ(t) is the probability that a given link points to an infectious individual and has the following general

form

Θ(t) = Mq

n∑
i=1

1
i
ν(i)P (i|k)

Ii(t)
Ni(t)

,

where the components of Θ(t) are explained as follows:

• The parameter Mq is the output of multi-input single-output (MISO) fuzzy system that is inferred from fuzzy rules
for linguistic variable q ∈ {high, moderate, low}. The detailed description of Mq will be specified later.

• The function ν(i) represents for the average number of links from which an infectious node with degree i will
propagate the malware program to other nodes. It is called the infectivity of the node with degree i and assumed to
be ν(k) ≤ k for each k = 1, 2, . . . , n.

• The fraction 1
i represents the probability that one of the degree i-infectious neighbor of a given node connect to this

node at a time step.
• The notation P (i|k) is the well-known conditional probability that a node with degree k links to a node with degree

i. In this work, we consider the probability P (i|k) as follows:

P (i|k) =
iP(i)
⟨k⟩

.

Here, the term ⟨k⟩ =
∑n

k=1 kP(k) is the average degree within the network.

In summary, the function Θ(t) is given as follows:

Θ(t) =
Mq

⟨k⟩

n∑
i=1

ν(i)
bi

P(i)Ii(t).

5. The mathematical analysis of the fractional SE1E2IQR epidemic model

For simplicity in representation, we introduce a table of notations and abbreviations (see Table 2).

5.1. The positiveness and boundedness of the solution to the proposed model

For simplicity, we use the following state vector forms

xk(t) =
[
E1,k(t) E2,k(t) Ik(t) Sk(t) Qk(t) Rk(t)

]⊤ for k = 1, 2, . . . , n,

x(t) =
[
x1(t) x2(t) · · · xn(t)

]
.
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In addition, we denote the right-hand side of (1) by f (xk(t)), that is,

f (xk(t)) =

⎡⎢⎢⎢⎢⎢⎣
f1(xk(t))
f2(xk(t))
f3(xk(t))
f4(xk(t))
f5(xk(t))
f6(xk(t))

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Λ(k) − (σ1(k) + σ2(k)) Sk(t)Θ(t) − µSk(t) + θRk(t)

σ1(k)Sk(t)Θ(t) − (η + ω1 + µ) E1,k(t)
σ2(k)Sk(t)Θ(t) − (µ + ω2 + ω3) E2,k(t) + ηE1,k(t)

ω3E2,k(t) − (µ + c + r1)Ik(t)
ω1E1,k(t) + ω2E2,k(t) + cIk(t) − (r2 + µ)Qk(t)

r1Ik(t) + r2Qk(t) − (µ + θ )Rk(t)

⎤⎥⎥⎥⎥⎥⎦ ,

for each k = 1, 2, . . . , n. Thus, the vector-valued function F (x(t)) is defined by

F (x(t)) =
[
f (x1(t)) f (x2(t)) · · · f (xn(t))

]
.

Now, we begin this section with the unique existence of positive solution and invariance results for the fractional
differential system (1).

Theorem 5.1. If the initial condition xk(0) ≥ 0 for all k = 1, n then the fractional SE1E2IQR epidemic model (1) with the
initial condition (2) always has a unique non-negative solution xk(t) and the function Θ(t) > 0 for all k = 1, n and t > 0.
Moreover, the compact set

Σ+
=
{
x(t) ∈ R6n

+
: Sk + E1,k + E2,k + Ik + Qk + Rk = bk, k = 1, n

}
.

is a positively invariant set of the epidemic model.

Proof. The proof of this theorem is divided into the following steps:

(Uniqueness and existence). For each k = 1, n, the fractional SE1E2IQR epidemic model (1) can rewritten in the following
compact form

C
0D

β
t x

k(t) = f (xk(t)),

with the initial condition xk(0) = xk0. The Jacobian matrix of the function f (xk(t)) is given by

∂ f (xk)
∂xk

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −(σ1(k)+σ2(k))Mqν(k)P(k)
bk⟨k⟩

Sk(t) −(σ1(k) + σ2(k))Θ(t) 0 θ

−α1 0 −σ1(k)Mqν(k)P(k)
bk⟨k⟩

Sk(t) −σ1(k)Θ(t) 0 0

η −α2
−σ2(k)Mqν(k)P(k)

bk⟨k⟩
Sk(t) −σ2(k)Θ(t) 0 0

0 ω3 −α5 0 0 0
ω1 ω2 −c 0 −α3 0
0 0 r1 0 r2 −α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can see that the Jacobian matrix
∂ f (xk)
∂xk

is a continuous function on R6
+
and hence, according to Remark 1.2.1 in [35],

it implies that f (xk(t)) is a locally Lipschitz vector-valued function on R6
+
. Finally, by applying Theorem 1.3.1 and Theorem

1.4.1 of [35], we can conclude that Cauchy problem (1) - (2) has a unique solution for every xk0 ≥ 0.

(Positiveness). The assumption xk(0) ≥ 0 implies that S0k , E
0
1,k, E

0
2,k, I

0
k ,Q

0
k and R0

k are all non-negative for each k = 1, n.
Now, we will prove that for every xk0 ≥ 0, the unique solution x(t) of Cauchy problem (1)–(2) is non-negative. For this
aim, we consider the following cases:

Case 1: Assume that the functions Sk(t) is positive on R+. Then, we consider

C
0D

β
t E1,k(t) + α1E1,k(t) = σ1(k)Sk(t)Θ(t)

C
0D

β
t E2,k(t) + α2E2,k(t) = σ2(k)Sk(t)Θ(t) + ηE1,k(t)

C
0D

β
t Qk(t) + α3Qk(t) = ω1E1,k(t) + ω2E2,k(t) + cIk(t)

C
0D

β
t Rk(t) + α4Rk(t) = r1Ik(t) + r2Qk(t).
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According to Example 4.9 in [36], the general solution of the above fractional differential equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1,k(t) = E0
1,kEβ

(
−α1tβ

)
+

∫ t

0

Eβ,β

(
−α1(t − τ )β

)
(t − τ )1−β

σ1(k)Sk(τ )Θ(τ )dτ

E2,k(t) = E0
2,kEβ

(
−α2tβ

)
+

∫ t

0

Eβ,β

(
−α2(t − τ )β

)
(t − τ )1−β

[
σ2(k)Sk(τ )Θ(τ ) + ηE1,k(τ )

]
dτ

Qk(t) = Q 0
k Eβ

(
−α3tβ

)
+

∫ t

0

Eβ,β

(
−α3(t − τ )β

)
(t − τ )1−β

[
ω1E1,k(τ ) + ω2E2,k(τ ) + cIk(τ )

]
dτ

Rk(t) = R0
kEβ

(
−α4tβ

)
+

∫ t

0

Eβ,β

(
−α4(t − τ )β

)
(t − τ )1−β

[r1Ik(τ ) + r2Qk(τ )] dτ ,

(5)

where t ≥ 0 and Eβ,β (λt) is the well-known Mittag–Leffler function (see Chap. 1 of [36]). Now, we consider two following
sub-cases:

Sub-case 1.1: Assume that the function Ik(t) is non-negative on R+ for each k = 1, n, which means that the disease is
persistent on the kth-group. Thus, the function

Θ(t) =
Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)Ik(t)

is non-negative for all t ≥ 0. Next, from the system (5), we directly get that E1,k(t), E2,k(t),Qk(t) and Rk(t) are also
non-negative functions for all t ≥ 0.

In addition, due to the assumption that the disease is present on the network, there always exists at least one k0 ≥ 1
such that Ik0 (0) > 0 and Ik(0) ≥ 0 for all k = 1, n. Thus, it implies that Θ(0) > 0. From the fourth fractional differential
equation of the system (1), we deduce that

C
0D

β
t Θ(t) =

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)C0D
β
t Ik(t) =

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)
[
ω3E2,k(t) − α5Ik(t)

]
≥ −α5

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)Ik(t) = −α5Θ(t).

Then, the fractional comparison principle (Lemma 10, [37]) implies that Θ(t) ≥ Θ(0)Eβ (−α5tβ ) > 0 for all t > 0. The
proof is completed.

Sub-case 1.2: Assume that there exists a constant t1 > 0 such that Ik(t) > 0 for all t ∈ [0, t1), Ik(t1) = 0 and Ik(t) < 0
for t > t1. Firstly, the presence of malware program on the network implies that the function Θ(t) > 0 for all t ∈ [0, t1].
Then, for each t ∈ [0, t1], the second differential equation of (1) implies that

E1,k(t) = E0
1,kEβ

(
−α1tβ

)
+

∫ t

0

Eβ,β

(
−α1(t − τ )β

)
(t − τ )1−β

σ1(k)Sk(τ )Θ(τ )dτ > 0.

As a consequence, we directly get that

E2,k(t) = E0
2,kEβ

(
−α2tβ

)
+

∫ t

0

Eβ,β

(
−α2(t − τ )β

)
(t − τ )1−β

[
σ2(k)Sk(τ )Θ(τ ) + ηE1,k(τ )

]
dτ > 0

for all t ∈ [0, t1] and k = 1, n. Next, by substituting the inequality E2,k(t) > 0 into the fourth fractional differential
equation, we immediately receive

Ik(t) = I0kEβ

(
−α5tβ

)
+ ω3

∫ t

0
(t − τ )β−1Eβ,β

(
−α5(t − τ )β

)
E2,k(τ )dτ > 0

for all t ∈ [0, t1], which contradicts to the assumption Ik(t1) = 0. Hence, we implies that this sub-case cannot occur.

Case 2: Notice that the initial susceptible population Sk(0) > 0. Assume that there exists the first time t0 > 0 such that
Sk(t0) = 0 and the function Sk(t) is positive for all t ∈ [0, t0). Then, two following sub-cases can occur:

Sub-case 2.1: If the function Ik(t) is positive on R+ then according to the solution formulas (5), it implies that the function
Θ(t) > 0 and the functions E1,k(t), E2,k(t),Qk(t) and Rk(t) are all non-negative on the interval [0, t0] for each k = 1, n.
Thus, for each t ∈ [0, t0], we have

C
0D

β
t Sk(t) = − [(σ1(k) + σ2(k)) Θ(t) + µ] Sk(t) + Λ(k) + θRk(t)

≥ −M1Sk(t) + Λ(k) + θRk(t),
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where κ1 = max[0,t0] {(σ1(k) + σ2(k)) Θ(t) + µ}. Thus, it yields

Sk(t) ≥ Sk(0)Eβ (−K1tβ ) +

∫ t

0
(t − τ )β−1Eβ,β

(
−K1(t − τ )β

)
[Λ(k) + θRk(τ )] dτ > 0

for all t ∈ [0, t0], which contradicts to the assumption Sk(t0) = 0. Hence, this case cannot occur.

Sub-case 2.2: Assume that there exists the first time t1 > 0 such that Ik(t) > 0 for all t ∈ [0, t1), Ik(t1) = 0 and Ik(t) < 0
for all t > t1. Then, there are two possibilities as below:

• If t0 = min{t0, t1} then it implies that Sk(t) ≥ 0 and Ik(t) > 0 for all t ∈ [0, t0]. From the system (5), we imply
that the functions E1,k(t), E2,k(t),Qk(t) and Rk(t) are non-negative for all t ∈ [0, t0]. By doing similar arguments as in
Sub-case 1.1, we deduce that Sk(t0) > 0, that leads to the contradiction.

• If t1 = min{t0, t1} then it implies that Sk(t) > 0 and Ik(t) ≥ 0 for all t ∈ [0, t1]. By doing similar arguments as in
Sub-case 1.2, we can conclude that Ik(t1) is always positive, that leads to a contradiction and hence, this case cannot
occur.

Therefore, we can conclude that the fractional SE1E2IQR epidemic model (1) with the initial condition (2) always admits
a unique non-negative solution xk(t) for all k = 1, n and the function Θ(t) > 0 for t > 0.

(Positively invariant). Now, our aim is to prove that the set Σ+ is a positively invariant set corresponding to the fractional
differential model (1). It is well-known that the initial conditions (2) are assumed to satisfy Eq. (3) and hence, xk(0) ∈ Σ+.
Next, by summing up the six fractional differential equations of the fractional SE1E2IQR model (1), we directly obtain

C
0D

β
t Nk(t) = Λ(k) − µNk(t),

which solves Nk(t) = Sk(t) + E1,k(t) + E2,k(t) + Ik(t) + Qk(t) + Rk(t) = bk for all k = 1, n. Finally, by combining with the
non-negativeness of the solution x(t), we deduce that the set Σ+ is a positively invariant set to the proposed system. □

5.2. The existence of equilibrium points and basic reproductive ratio R0 of the proposed model

An important perspectives of the proposed epidemic model is to determine whether the network is able to survive
under the attacking of malware. For this aim, we need to discuss the asymptotic stability of equilibrium points of the
proposed epidemic model consisting of MFE point and EE point. Here, the MFE point and EE point can be determined by
solving the following system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Λ(k) − (σ1(k) + σ2(k)) Sk(t)Θ(t) − µSk(t) + θRk(t) = 0
σ1(k)Sk(t)Θ(t) − (η + ω1 + µ) E1,k(t) = 0
σ2(k)Sk(t)Θ(t) − (µ + ω2 + ω3) E2,k(t) + ηE1,k(t) = 0
ω3E2,k(t) − (µ + c + r1)Ik(t) = 0
ω1E1,k(t) + ω2E2,k(t) + cIk(t) − (r2 + µ)Qk(t) = 0
r1Ik(t) + r2Qk(t) − (µ + θ )Rk(t) = 0.

(6)

Firstly, we give the existence result of the malware-free equilibrium point of the proposed epidemic model

Theorem 5.2. The fractional SE1E2IQR epidemic model (1) always admits an MFE point

E0 = (0, 0, 0, b1, 0, 0, . . . , 0, 0, 0, bn, 0, 0)  
6n

Proof. We can directly check that (0, 0, 0, bk, 0, 0) satisfies the system (6) for all k = 1, 2, . . . , n. Thus, it implies that the
point

E0 = (0, 0, 0, b1, 0, 0, . . . , 0, 0, 0, bn, 0, 0)  
6n

is an equilibrium point of the proposed model (1), namely the malware-free equilibrium (MFE) point. □

Next, by applying the next-generation method, we can determine the basic reproductive ratio R0 of the fractional
SE1E2IQR epidemic model (1). Indeed, the infection in wireless sensor network for the proposed model has following
characteristic properties:

• There are only three infection causing compartments of the epidemic model (1), that are Type 1-Exposed (E1), Type
2-Exposed (E2) and Infectious (I).

• The propagation from the exposure compartment to the infectious compartment (I) or the transition between two
exposure compartments are only the spread of an infected individual through the various compartments.
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According to epidemiological theory, it follows that the gain term and loss term corresponding to the fractional
SE1E2IQR epidemic model (1) is

• Gain terms:
[
σ1(k)Sk(t)Θ(t) σ2(k)Sk(t)Θ(t) 0

]⊤.
• Loss terms:

[
α1E1,k −ηE1,k(t) + α2E2,k(t) −ω3E2,k(t) + α5Ik(t)

]⊤.
Let On and In be the n × n zero matrix and n × n identity matrix, respectively. Then, the basic reproductive ratio R0 is
determined as follows:

Step 1: The rate matrix F of new infection’s appearance at E0 is F =

[
On On On
On On On
σ1B σ2B On

]
, where B is a block matrix given

by

B =
Mq

⟨k⟩

⎡⎢⎢⎣
b1
2b2
...

nbn

⎤⎥⎥⎦[ ν(1)
b1

P(1) ν(2)
b2

P(2) · · ·
ν(n)
bn

P(n)
]
.

Step 2: The transition matrix V of infected states is V =

[
α1In −ηIn On
On α2In −ω3In
On On α5In

]
.

Step 3: The basic reproductive ratio R0 is the largest eigenvalue of the matrix FV−1 given by

FV−1
=

⎡⎢⎣ On On On
On On On

σ1B
ησ1 + α1σ2

α1α2
B

ω3(ησ1 + α1σ2)
α1α2α5

B

⎤⎥⎦ .

Finally, the basic reproductive ratio R0 of the fractional SE1E2IQR epidemic model (1) is given by

R0 =
Mq

⟨k⟩

n∑
k=1

ω3ν(k)P(k)(ησ1(k) + α1σ2(k))
α1α2α5

=
ω3Mq⟨α6ν⟩

α1α2α5⟨k⟩
, (7)

where ⟨α6ν⟩ =
∑n

k=1 ν(k)P(k)(ησ1(k) + α1σ2(k)).

Remark 5.1. According to the formula (7), we can see that the basic reproductive ratio R0 has no relationship with the
degree-dependent birth rate Λ(k), which claims that the change of birth rate does not play any role in the widespread
of disease. However, the number R0 is directly proportional to the value of the heterogeneous factor ⟨α6ν⟩

⟨k⟩ , which means
that the network heterogeneity can make malware programs easier to spread in the network.

Theorem 5.3. Consider the fractional SE1E2IQR epidemic model (1) and the basic reproductive ratio defined by (7). If R0 > 1
then there exists a unique epidemic equilibrium point

E∗ =
{
(E∗

1,k, E
∗

2,k, I
∗

k , S
∗

k ,Q
∗

k , R∗

k)
}n
k=1

= (E∗

1,1, E
∗

2,1, I
∗

1 , S
∗

1 ,Q
∗

1 , R∗

1, . . . , E
∗

1,n, E
∗

2,n, I
∗

n , S
∗

n ,Q
∗

n , R∗

n),

where

S∗

k =
α1α2α5

ω3α6,kΘ
∗
I∗k , E∗

1,k =
α2α5σ1(k)

ω3α6,k
I∗k , E∗

2,k =
α5

ω3
I∗k ,

Q ∗

k =
α7,k

ω3α3α6,k
I∗k , R∗

k =
r1α3α6,kω3 + r2α7,k

α3α4α6,kω3
I∗k Θ∗

=
Mq

⟨k⟩

n∑
i=1

ν(i)
bi

P(i)I∗i (8)

I∗k =
bkα3α4α6,kω3Θ

∗[
α3α4α6,kω3 + α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r1α3α6,kω3 + r2α7,k

]
Θ∗ + α1α2α3α4α5

.

Proof. In order to evaluate the epidemic equilibrium point E∗ =
{
(E∗

1,k, E
∗

2,k, I
∗

k , S
∗

k ,Q
∗

k , R∗

k)
}n
k=1

, we need to impose the
right-hand side of the fractional system (1) to be equal to zero. Thus, we will prove that the tuple

(
E∗

1,k, E
∗

2,k, I
∗

k , S
∗

k ,Q
∗

k , R∗

k

)
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Table 3
The sensitivity indices of model’s parameters.
No Para. Description Sensitivity

index

1 Mq The fuzzy rule-based interaction constant +1
2 ⟨k⟩ The average degree within the network −1
3 c The quarantine rate of Infectious nodes −0.6538
4 ω1 The quarantine rate of Type 1-exposed nodes −0.1448
5 ω2 The quarantine rate of Type 2-exposed nodes −0.333
6 ω3 The rate of being infectious of Type 2-exposed nodes 0.444
7 η The transition rate from the type 1-exposed state to the type 2-exposed state 0.20276

satisfies the following system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S∗

k + E∗

1,k + E∗

2,k + I∗k + Q ∗

k + R∗

k = bk
σ1S∗

kΘ
∗
− α1E∗

1,k = 0
σ2(k)S∗

kΘ
∗
− α2E∗

2,k + ηE∗

1,k = 0
ω3E∗

2,k − α5I∗k = 0
ω1E∗

1,k + ω2E∗

2,k + cI∗k − α3Q ∗

k = 0
r1I∗k + r2Q ∗

k − α4R∗

k = 0,

(9)

for each k = 1, 2, . . . , n, where the term Θ∗ is given by Θ∗
=

Mq

⟨k⟩
∑n

k=1
ν(k)
bk

P (k) I∗k and the coefficients of (9) are given

in Table 3. Then, from the fourth equation of (9), we immediately obtain E∗

2,k =
α5

ω3
I∗k . Next, by combining the second and

third equations of the system (9), we receive

E∗

1,k =
α2α5σ1(k)

[α1σ2(k) + ησ1(k)]ω3
I∗k =

α2α5σ1(k)
α6,kω3

I∗k .

Thus, by substituting E∗

1,k into the second equation, it yields S∗

k =
α1

σ1(k)Θ∗
E∗

1,k =
α1α2α5

α6,kω3Θ
∗
I∗k . Two last equations of the

system (9) imply that

Q ∗

k =
α2α5σ1(k)ω1 + α5α6,kω2 + cα3α6,kω3

α3α6,kω3
I∗k =

α7,k

α3α6,kω3
I∗k ,

R∗

k =
r1α3α6,kω3 + r2α7,k

α3α4α6,kω3
I∗k .

Finally, by substituting all terms S∗

k , E
∗

1,k, E
∗

2,k, I
∗

k , Q
∗

k and R∗

k into the first equation, we can solve the value of I∗k as follows:

I∗k =
bkα3α4α6,kω3Θ

∗[
α3α4α6,kω3 + α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r1α3α6,kω3 + r2α7,k

]
Θ∗ + α1α2α3α4α5

. (10)

For simplicity, we use the notation Θ instead of Θ∗ and denote

Ak = Mqν(k)P (k) α3α4α6,kω3 > 0,

Ã1,k = α3α4α6,kω3 + α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r1α3α6,kω3 + r2α7,k > 0,

Ã2 = α1α2α3α4α5 > 0.

Then, by using (10), we have a self-consistency equation Θ =
1

⟨k⟩
∑n

k=1
AkΘ

Ã1,kΘ + Ã2
, or equivalently,

Θ −
1

⟨k⟩

n∑
k=1

AkΘ

Ã1,kΘ + Ã2
= 0. (11)

It is clear that the function Θ ≡ 0 is always a solution of the self-consistency Eq. (11). Now, our aim is to determine the
condition under which the self-consistency Eq. (11) has a unique nontrivial solution Θ∗. For this aim, we define

F(Θ) = 1 −
1

⟨k⟩

n∑
k=1

Ak

Ã1,kΘ + Ã2
, Θ ∈ [0, 1].
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Here, it should be noted that
Ak

Ã1,k
<

Mqν(k)P (k) α3α4α6,kω3

α3α4α6,kω3
= Mqν(k)P(k). Thus, we can see that F(Θ) is continuous on

[0, 1] and

F(1) = 1 −
1

⟨k⟩

n∑
k=1

Ak

Ã1,k + Ã2
> 1 −

1
⟨k⟩

n∑
k=1

Ak

Ã1,k
> 1 −

Mq
n∑

k=1

kP(k)

n∑
k=1

ν(k)P(k) > 0.

Moreover, for each Θ ∈ [0, 1], we have
dF(Θ)
dΘ

=
1

⟨k⟩
∑n

k=1
AkÃ1,k

(Ã1,kΘ + Ã2)2
> 0, which implies that the function F(Θ) is

increasing on [0, 1]. Therefore, it follows from the Intermediate Value theorem that the equation F(Θ) = 0 has a unique
positive solution Θ∗

∈ (0, 1) if F(0) < 0. Hence,

1
⟨k⟩

n∑
k=1

Ak

Ã2
=

Mq

⟨k⟩

n∑
k=1

[ησ1(k) + α1σ2(k)]ω3

α1α2α5
ν(k)P(k) > 1,

which indicates that R0 > 1. Finally, the positive solution Θ∗ of the self-consistency Eq. (11) uniquely solves the epidemic
equilibrium point E∗ given by (8). □

5.3. The stability analysis of the proposed fractional epidemic model

In this section, we discuss the qualitative analysis of the proposed fractional epidemic model. Firstly, we consider the
relation between the basic reproductive ratio R0 and the locally asymptotic stability of the MFE point E0:

Theorem 5.4. Consider the malware-free equilibrium point E0.

(i) If R0 > 1 then the equilibrium E0 is unstable.

(ii) If R0 = 1 then the equilibrium E0 is not locally asymptotically stable.

(iii) If R0 < 1 and α1α2 + α1α5 + α2α5 ≤
Mq⟨σ2ν⟩

⟨k⟩ then the equilibrium E0 is unstable.

(iv) If R0 < 1 and α1α2 + α1α5 + α2α5 >
Mq⟨σ2ν⟩

⟨k⟩ then the equilibrium E0 is locally asymptotically stable.

Proof. In order to investigate the local asymptotic stability of the malware-free equilibrium E0, we will apply the
linearization method for the fractional SE1E2IQR epidemic model around E0. For this aim, let us consider Jacobi matrix
DF (E0) at the point E0 subjecting to the epidemic model (1) in following compact form

DF (E0) =

⎡⎢⎢⎣
M11 M12 · · · M1n
M21 M22 · · · M2n
...

...
. . .

...

Mn1 Mn2 · · · Mnn

⎤⎥⎥⎦
6n×6n

where for each i, j = 1, n, the 6 × 6-square matrices Mii, Mij are given by

Mii =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−α1 0 Mqσ1(i)ν(i)P(i)
⟨k⟩ 0 0 0

η −α2
Mqσ2(i)ν(i)P(i)

⟨k⟩ 0 0 0
0 ω3 −α5 0 0 0
0 0 −

Mq[σ1(i)+σ2(i)]ν(i)P(i)
⟨k⟩ −µ 0 θ

ω1 ω2 c 0 −α3 0
0 0 r1 0 r2 −α4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Mij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 bjMqσ1(i)ν(i)P(i)
bi⟨k⟩

0 0 0

0 0 bjMqσ2(i)ν(i)P(i)
bi⟨k⟩

0 0 0
0 0 0 0 0 0
0 0 −

bjMq[σ1(i)+σ2(i)]ν(i)P(i)
bi⟨k⟩

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

According to the stability theory of dynamical systems, in order to prove the local asymptotic stability of the malware-free
equilibrium E0, we need to show that all eigenvalues of the Jacobi matrix DF (E0) have negative real parts. For this aim,
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Fig. 6. The variation table for the equation P3(λ̃) = 0.

we firstly construct the characteristic polynomial P6n(λ̃) w.r.t. the Jacobi matrix DF (E0). Indeed, by using mathematical
induction principle, we immediately obtain

P6n(λ̃) = (λ̃ + α4)n(λ̃ + α3)n(λ̃ + µ)n(λ̃ + α1)n−1(λ̃ + α2)n−1(λ̃ + α5)n−1P3(λ̃),

in which the third-order polynomial P3(λ̃) is given by

P3(λ̃) = (λ̃ + α1)(λ̃ + α2)(λ̃ + α5) −
Mq⟨σ2ν⟩

⟨k⟩
λ̃ − α1α2α5

ω3Mq⟨α6ν⟩

α1α2α5⟨k⟩

= λ̃3
+ (α1 + α2 + α5)λ̃2

+

(
α1α2 + α1α5 + α2α5 −

Mq⟨σ2ν⟩

⟨k⟩

)
λ̃ + α1α2α5(1 − R0).

It can be easily verified that the solution set of the characteristic equation P6n(λ̃) = 0 consists of

• The negative solutions λ̃ = −α4, λ̃ = −α3, λ̃ = −µ with multiplicity n.
• The negative solutions λ̃ = −α1, λ̃ = −α2, λ̃ = −α5 with multiplicity n − 1.

Therefore, we can conclude that the stability of malware-free equilibrium E0 completely depends on the sign of solution
of the equation P3(λ̃) = 0. For simplicity, let us denote

a0 = α1α2α5(1 − R0), a1 = α1α2 + α1α5 + α2α5 −
Mq⟨σ2ν⟩

⟨k⟩
, a2 = α1 + α2 + α5 > 0.

Now, our proof can be proceeded into the following cases:

Case 1: If R0 > 1 then it follows that the coefficient a0 < 0 and hence, solutions of the equation P3(λ̃) = 0 belongs
to one of following possibilities: 3 positive roots, 1 positive root and 2 complex conjugate roots or 2 negative roots and
one positive root. Thus, since the Jacobi matrix DF (E0) always admits at least one positive eigenvalue, the malware-free
equilibrium E0 is unstable.

Case 2: If R0 = 1 then the equation P3(λ̃) = 0 has at least one eigenvalue with zero real part and hence, the equilibrium
E0 is not locally asymptotically stable.

Case 3: If R0 < 1 then it follows that the coefficient a0 > 0 and hence, solutions of the equation P3(λ̃) = 0 belongs to
one of following possibilities: 3 negative roots, 1 negative root and 2 complex conjugate roots or 2 positive roots and 1
negative root. It should be noted that the equation P′

3(λ̃) = 3λ̃2
+ 2a2λ̃ + a1 = 0 has the positive discriminant. Indeed,

we have

∆ = (α1 + α2 + α5)
2
− 3

(
α1α2 + α1α5 + α2α5 −

Mq⟨σ2ν⟩

⟨k⟩

)
=

(α1 − α2)2 + (α1 − α5)2 + (α2 − α5)2

2
+

3Mq⟨σ2ν⟩

⟨k⟩
> 0.

Sub-case 3.1: If a1 = 0 then the equation P3(λ̃) = 0 has a zero solution λ̃ = 0 with multiplicity 2, which follows that the
malware-free equilibrium E0 is unstable.

Sub-case 3.2: If a1 < 0 then we directly get that the equation P′

3(λ̃) = 3λ̃2
+ 2a2λ̃ + a1 = 0 has two distinct solutions, say

λ̃1 < 0 and λ̃2 > 0. Next, we have the following variation table (see Fig. 6).
Since the fact that P3(0) = a0 > 0, Fig. 6 indicates that the equation P3(λ̃) = 0 always have at least two roots with

positive real part if R0 < 1 and a1 < 0. This follows that the malware-free equilibrium E0 is unstable.

Sub-case 3.3: If a1 > 0 then we directly get that the equation P′

3(λ̃) = 3λ̃2
+ 2a2λ̃ + a1 = 0 has two distinct negative

solutions, say λ̃1 and λ̃2. Next, we have the following variation table (see Fig. 7)
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Fig. 7. The variation table for the equation P3(λ̃) = 0.

Due to the fact that P3(0) = a0 > 0, Fig. 7 indicates that the equation P3(λ̃) = 0 cannot have solution with non-negative
real part if R0 < 1. Therefore, we can conclude that if R0 < 1 and α1α2 +α1α5 +α2α5 >

Mq⟨σ2ν⟩

⟨k⟩ , all eigenvalues of Jacobi
matrix DF (E0) have negative real parts, which means that the malware-free equilibrium E0 is locally asymptotically
stable. □

Remark 5.2. As a consequence of Theorem 5.4, the condition R0 < 1 is not sufficient enough for the local asymptotic
stability of the malware-free equilibrium E0.

In order to prove the next asymptotic stability results, we refer from Lemma 3.1 of [14] a necessary estimation related
to fractional derivative:

Lemma 5.1 ([14]). Assume that x ∈ AC([0, ∞),R+) and α ∈ (0, 1]. Then, for each t ≥ 0 and x∗
∈ R+, we have

C
0D

β
t

(
x(t) − x∗

− x∗ ln(
x(t)
x∗

)
)

≤

(
1 −

x∗

x(t)

)
C
0D

β
t x(t).

Remark 5.3. Consider a real-valued function Ψ : R+ → R+ defined by

Ψ (z) = z − z∗
− z∗ ln

( z
z∗

)
, z, z∗

∈ R+.

Note that for all z ≥ 0, the function Ψ (z) is non-negative and attains its global minimum at z = z∗.

Next, we consider the globally asymptotic behavior of the MFE point E0, which is an important results in the theory
of epidemiology.

Theorem 5.5. Denote

R̃0 =
Mq

⟨k⟩

n∑
k=1

ν(k)P(k)
ω3 (σ1(k) + σ2(k))

α2α5
.

If R̃0 < 1 then the malware-free equilibrium point E0 of the fractional SE1E2IQR epidemic model (1) is globally asymptotically
stable.

Proof. Let x(t) =
{
(E1,k(t), E2,k(t), Ik(t), Sk(t),Qk(t), Rk(t))

}n
k=1 be a non-negative solution of the fractional epidemic model

(1). Now, we construct a functional V : Σ+
→ R as follows:

V(x(t)) =
Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)
{[

Sk(t) − bk − bk ln
(Sk(t)

bk

)]
+ E1,k(t) + E2,k(t) + Ik(t)

}
.

Here, the above function V(x(t)) is non-negative definite with respect to the MFE state E0. This function is called the
Lyapunov function defined along the non-negative solution x(t) of the fractional system (1). Next, by taking Caputo
fractional derivative in time of the function V(x(t)) along the solution x(t) and using Lemma 5.1, we immediately obtain

C
0D

β
t V(x(t)) =

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)C0D
β
t

(
Sk(t) − bk − bk ln

(Sk(t)
bk

))

+
Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)
(
C
0D

β
t E1,k(t) +

C
0D

β
t E2,k(t) +

C
0D

β
t Ik(t)

)
≤

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k)
[(

1 −
bk

Sk(t)

)
C
0D

β
t Sk(t) +

C
0D

β
t
(
E1,k(t) + E2,k(t) + Ik(t)

)]
,
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where(
1 −

bk
Sk(t)

)
C
0D

β
t Sk(t) =

(
1 −

bk
Sk(t)

)
[Λ(k) − (σ1(k) + σ2(k)) Sk(t)Θ(t) − µSk(t) + θRk(t)]

= Λ(k) − (σ1(k) + σ2(k)) Sk(t)Θ(t) − µSk(t) + θRk(t)

−
bkΛ(k)
Sk(t)

+ bk (σ1(k) + σ2(k)) Θ(t) + µbk −
bkθRk(t)
Sk(t)

(12)

and
C
0D

β
t
[
E1,k(t) + E2,k(t) + Ik(t)

]
= (σ1(k) + σ2(k)) Sk(t)Θ(t) − (ω1 + µ)E1,k(t)

− (ω2 + µ)E2,k(t) − (µ + c + r1)Ik(t)

≤ (σ1(k) + σ2(k)) Sk(t)Θ(t) − (µ + c + r1)Ik(t). (13)

By combining the estimations (12) and (13), we receive(
1 −

bk
Sk(t)

)
C
0D

β
t Sk(t) +

C
0D

β
t
(
E1,k(t) + E2,k(t) + Ik(t)

)
≤

(
Λ(k) − µSk(t) −

bkΛ(k)
Sk(t)

+ µbk

)
+ θRk(t) −

bkθRk(t)
Sk(t)

+ bk (σ1(k) + σ2(k)) Θ(t) − (µ + c + r1)Ik(t).

For each t ≥ 0 and x(t) ∈ Σ+, we have

Λ(k) − µSk(t) −
bkΛ(k)
Sk(t)

+ µbk =

(
1 −

bk
Sk(t)

)
(Λ(k) − µSk(t)) ≤ 0

θRk(t) −
bkθRk(t)
Sk(t)

= θRk(t)
(
1 −

bk
Sk(t)

)
≤ 0.

As a consequence, we directly get that

C
0D

β
t V(x(t)) ≤

Mq

⟨k⟩

n∑
k=1

ν(k)
bk

P(k) [bk (σ1(k) + σ2(k)) Θ(t) − α5Ik(t)]

=
Mq

⟨k⟩

n∑
k=1

ν(k)P(k) (σ1(k) + σ2(k)) Θ(t) − α5Θ(t)

= α5Θ(t)

[
Mq

⟨k⟩

n∑
k=1

ν(k)P(k)
ω3 (σ1(k) + σ2(k))

α2α5

α2

ω3
− 1

]

= α5Θ(t)
(

α2

ω3
R̃0 − 1

)
.

Thus, it follows that C
0D

β
t V(x(t)) ≤ 0 if

α2

ω3
R̃0 − 1 ≤ 0, or equivalently,

R̃0 ≤
ω3

α2
=

ω3

µ + ω2 + ω3
< 1.

In addition, we can also verify that C
0D

β
t V(x(t)) = 0 if and only if

Sk(t) = bk and E1,k(t) = E2,k(t) = Ik(t) = 0, k = 1, 2, . . . , n.

Hence, the largest invariant set of
{
x(t) ∈ Σ+

:
C
0D

β
t V(x(t)) = 0

}
is {E0}. Finally, by applying LaSalle’s invariance principle

(see [38]), we can conclude that the malware-free equilibrium E0 is globally asymptotically stable if the condition R̃0 < 1
holds. □

Remark 5.4. Due to the fact that α1 = η + µ + ω1 > η, it implies that
ω3 (σ1(k) + σ2(k))

α2α5
>

ω3 (ησ1(k) + α1σ2(k))
α1α2α5

.

As a consequence, we can see that R̃0 > R0. According to Theorem 5.5, the malware-free equilibrium point E0 is globally
asymptotically stable only when R̃0 > 1. Hence, we can conclude that the condition R0 < 1 is not sufficient to eliminate
the disease on the network.
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5.4. The bifurcation analysis

In the previous section, we claimed that if the basic reproductive ratio R0 ̸= 1 then the equilibrium points are either
asymptotically stable or unstable. In this section, we aim to discuss the bifurcation phenomena of the proposed model
occurring when R0 = 1 or in the other words, we find a necessary condition to determine the direction of bifurcation of
epidemic equilibrium curve at R0 = 1. The theorem is stated as follows:

Theorem 5.6. The fractional SE1E2IQR epidemic model (1) always has a forward bifurcation at R0 = 1 for all values of
parameters.

Proof. In order to draw the bifurcation curve, we consider the graph of infectious compartments locally as a function of R0.
Then, the bifurcation direction is determined by the sign of the slope at the point (R0, Θ) = (1, 0). In particular, we have
that the epidemic equilibrium curve bifurcates forward (or backward) if the derivative at the critical point (R0, Θ) = (1, 0)

is positive (or negative), respectively. Now, in order to determine the sign of the function
∂Θ

∂R0
at (1, 0), we will find this

partial derivative by implicitly differentiating from the self-consistency Eq. (11).
Indeed, since the fact that at the epidemic equilibrium point, the function Ik(t) is positive for all k = 1, 2, . . . , n and

t ≥ 0, which follows that the function Θ(t) is also positive for all t ≥ 0. According to the self-consistency Eq. (11), we
deduce that the solution F(Θ) = 0 must have at least one solution Θ∗, which solves the epidemic equilibrium point of
the proposed model. Hence, we have the following equation

1
⟨k⟩

n∑
k=1

Ak

Ã1,kΘ + Ã2
= 1,

where according to Theorem 5.3, the parameters Ak, Ã1,k and Ã2 are given by

Ak = Mqν(k)P (k) α3α4α6,kω3,

Ã2 = α1α2α3α4α5

and

Ã1,k = α3α4α6,kω3 + α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r1α3α6,kω3 + r2α7,k

= ω3
(
α3α4α6,k + r1α3α6,k

)
+
(
α3α4α5α6,k + α4α7,k + α2α3α4α5σ1(k) + r2α7,k

)
= ω3α8,k + α9,k.

Next, by multiplying the term Mq⟨α6ν⟩

α1α2α5⟨k⟩ to both numerator and denominator of Ak
Ã1,kΘ+Ã2

, we directly get that

Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)R0

α8,kR0Θ +
Mq⟨α6ν⟩

α1α2α5⟨k⟩

[
α9,kΘ + Ã2

] = 1 (14)

Here, it should be noted that R0 =
ω3Mq⟨α6ν⟩

α1α2α5⟨k⟩
and the above equation is considered as the epidemic equilibrium curve

in the (R0, Θ) positive quadrant. Then, in order to obtain the necessary and sufficient condition for the direction of
bifurcation of the epidemic equilibrium curve, we take implicit differentiation Eq. (14) with respect to R0 and give the

sign of the partial derivative
∂Θ

∂R0
at the point (R0, Θ) = (1, 0). Indeed, we have

Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)
(
P1,k − P2,k

)[
α8,kR0Θ +

Mq⟨α6ν⟩

α1α2α5⟨k⟩

(
α9,kΘ + Ã2

)]2 = 0, (15)

where the terms P1,k and P2,k is defined as follows:

P1,k = α8,kR0Θ +
Mq⟨α6ν⟩

α1α2α5⟨k⟩

(
α9,kΘ + Ã2

)
P2,k = R0

[
α8,kΘ + α8,kR0

∂Θ

∂R0
+ α9,k

Mq⟨α6ν⟩

α1α2α5⟨k⟩
∂Θ

∂R0

]
.

In the following, for simplicity, we denote
∂Θ

∂R0

⏐⏐⏐
(R0,Θ)=(1,0)

by
∂Θ

∂R0

⏐⏐⏐
(1,0)

Then, at R0 = 1 and Θ = 0, Eq. (15) becomes

Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)
[

Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2 − α8,k
∂Θ

∂R0
|(1,0) − α9,k

Mq⟨α6ν⟩

α1α2α5⟨k⟩
∂Θ

∂R0
|(1,0)

]
(

Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2

)2 = 0,
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in which

Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)
Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2(
Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2

)2 = 1,

Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)α8,k
∂Θ

∂R0
|(1,0)(

Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2

)2 =

n∑
k=1

α6,kα8,kν(k)P(k)⟨k⟩ ∂Θ
∂R0

|(1,0)

α3α4Mq⟨α6ν⟩2

=
(α4 + r1)⟨k⟩
α4Mq⟨α6ν⟩

(
n∑

k=1

α2
6,kν(k)P(k)

)
∂Θ

∂R0
|(1,0)

=
(α4 + r1)⟨k⟩⟨α2

6ν⟩

α4Mq⟨α6ν⟩

∂Θ

∂R0
|(1,0).

In addition, we recall that α9,k = α3α4α5(α2σ1(k) + α6,k) + (r2 + α4)α7,k and denote

RHS =
Mq

⟨k⟩

n∑
k=1

α3α4α6,kν(k)P(k)α9,k
Mq⟨α6ν⟩

α1α2α5⟨k⟩
∂Θ

∂R0
|(1,0)(

Mq⟨α6ν⟩

α1α2α5⟨k⟩ Ã2

)2
=

n∑
k=1

α6,kν(k)P(k)σ1(k)
α1⟨α6ν⟩

∂Θ

∂R0
|(1,0) + ω1(r2 + α4)

n∑
k=1

α6,kν(k)P(k)σ1(k)
α1α3α4⟨α6ν⟩

∂Θ

∂R0
|(1,0)

+

n∑
k=1

α2
6,kν(k)P(k)
α1α2⟨α6ν⟩

∂Θ

∂R0
|(1,0) +

(r2 + α4)(α5ω2 + cα3ω3)
α1α2α3α4α5

n∑
k=1

α2
6,kν(k)P(k)

⟨α6ν⟩

∂Θ

∂R0
|(1,0)

=
∂Θ

∂R0
|(1,0)

{
⟨α6νσ1⟩

⟨α6ν⟩

[
1
α1

+
ω1(r2 + α4)

α1α3α4

]
+

⟨α2
6ν⟩

⟨α6ν⟩

[
1

α1α2
+

(r2 + α4)(α5ω2 + cα3ω3)
α1α2α3α4α5

]}
.

Therefore, we immediately obtain

∂Θ

∂R0
|(1,0)

{
⟨α2

6ν⟩

⟨α6ν⟩

[
1

α1α2
+

(r2 + α4)(α5ω2 + cα3ω3)
α1α2α3α4α5

+
(α4 + r1)⟨k⟩

α4Mq

]
+

⟨α6νσ1⟩

⟨α6ν⟩

[
1
α1

+
ω1(r2 + α4)

α1α3α4

]}
= 1.

Since the model’s parameters are all positive, we can conclude that
∂Θ

∂R0
|(1,0) is always positive for all values of parameters.

Hence, the fractional SE1E2IQR epidemic model (1) always exhibits a forward bifurcation at R0 = 1. □

6. Simulation

This section perform some numerical simulations in terms of network structure and model’s parameters to explain our
theoretical results. Since Wireless Sensor Network is an Energy-Aware Barabási Albert scale-free network, two adjustable
parameter λd and λe are assumed to be positive in order to demonstrate the importance of both node’s degree and residual
energy of node in the network. Moreover, we also assume that the connectivity among nodes dominates the network

structure, i.e., λd > λe. Thus, we choose λd =
4
5
, λe =

1
5
. In addition, according to the formula (11) of [3], the degree

distribution is P(k) =
C

(79.94k + 120)3.5
and C is a constant such that

∑n
k=1 P(k) = 1. In this section, we choose the

number of groups n = 10, the infected rates σ1(k) = σ1k, σ2(k) = σ2k and the infectivity ν(k) = km with σ1 = 0.35,
σ2 = 0.25, m = 0.25. In the following, by using the series computing tool symsum in MatLab, we immediately get

⟨k⟩ = 1.7837
⟨σ1ν⟩ = 0.7773
⟨σ2ν⟩ = 0.5552
⟨α6ν⟩ = 0.2776.

In addition, we assume that the other parameters are chosen as follows: Λ(k) = 4, ω1 = 0.1, ω2 = 0.12, ω3 = 0.2,
c = 0.17, µ = 0.04, r1 = 0.05, θ = 0.03, r2 = 0.06 and η = 0.15. Therefore, the basic reproductive ratio R0 is given by

R0 =
ω3Mq⟨α6ν⟩

α1α2α5⟨k⟩
≈ 1.1467Mq.

Hence, we can conclude that if the fuzzy-rule based interaction constant Mq is large enough then the basic reproduction
ratio R0 may exceed to 1, that proves the important role of the regulation of data transmitting process in the network
when the network is infected.
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Fig. 8. The sensitivity test results for significance of parameters.

6.1. The analysis sensitivity of the basic reproductive ratio R0

In an epidemic model, the sensitivity analysis studies how different uncertainty sources contribute to the model’s
overall uncertainty and the sensitivity indices then allow us to estimate the relative change of the basic reproductive
ratio R0 when a parameter changes. We recall from [39] the following definition

Definition 6.1 ([39]). The normalized forward sensitivity index of a variable u that depends differentiably on a parameter
p is defined by

Υ u
p =

∂u
∂p

×
p
u
.

As a consequence, we now calculate the normalized sensitivity indices of the basic reproductive ratio R0 that measure
the relative change of the ratio R0 w.r.t. the relative changes of other parameters. For this aim, we rewrite the basic
reproductive ratio R0 as follows:

R0 =
ηω3Mq⟨σ1ν⟩

α1α2α5⟨k⟩
+

ω3Mq⟨σ2ν⟩

α2α5⟨k⟩
,

where ⟨σ1ν⟩ =
∑

k=1 σ1(k)ν(k)P(k) and ⟨σ2ν⟩ =
∑

k=1 σ2(k)ν(k)P(k). Then, we have

Υ
R0
Mq

= 1, Υ
R0
⟨k⟩ = −1, Υ

R0
c = −

c
c + µ + r1

, Υ R0
ω2

= −
ω2

ω2 + ω3 + µ

Υ R0
ω1

= −
ω1η⟨σ1ν⟩

α1(η⟨σ1ν⟩ + α1⟨σ2ν⟩)
, Υ R0

ω3
=

ω2 + µ

ω3 + ω2 + µ
, Υ R0

η =
(ω1 + µ)η⟨σ1ν⟩

α1(η⟨σ1ν⟩ + α1⟨σ2ν⟩)
Hence, the sensitivity test results of the proposed model’s parameters can be summarized in the following table (Table 3)
and Fig. 8, in which Table 3 shows the sensitivity indices of parameters based on the value of parameters proposed at the
beginning of this section and Fig. 8, construct by using bar toolbox in Matlab, presents the graphical representations for
Table 3.

The above table indicates that the basic reproductive ratio R0 is the least sensitive to the quarantine rate ω1, followed
by the transition rate η. The fuzzy rule-based interaction constant Mq and the average degree ⟨k⟩ have the same sensitivity
index. It can be also observed that the threshold R0 is more sensitive to the quarantine rate c than the one of ω2. The

sensitivity of R0 to the infectious rate ω3 is nearly
4
9
. By the data in Table 4 and Fig. 8, we can claim that if the rate

of quarantine rate c is to increase by 10% then the value of R0 will decrease by 6.538%. Likewise, a 10% increase of the
average degree will correspond to a 10% decrease of the threshold R0 while only a decrease of 1.448% of the quarantine
rate ω1 can increase the value of R0 by 10%. In order to decrease the value of R0 by 10%, the increases of 2.0276%, 4.44%
and 10% corresponding to the parameters η, ω3 and Mq are required.

On the other hand, Theorem 5.4 shows that the condition R0 < 1 ensures the locally asymptotic stability of the MFE
point E0. In the following, by treating the basic reproductive ratio R0 as a function of variables c , ω1 and ω2, we give the
effect of quarantine constants ω1, ω2, c in the change of R0 with given other parameters and Mq = 0.5. The figures are
plotted by using Matlab toolbox plot.

By using Matlab toolbox plot3d, we give Fig. 9 to represent the three-dimensional phrase portraits of the basic
reproductive ratio R0 with effect of each pair of quarantine parameters. According to Fig. 9, we obtain the different changes
of the basic reproductive ratio R0 with respect to quarantine parameters c , ω1 and ω2. It experienced a dramatic decline
in the change of R0 w.r.t. the parameter c , while the threshold R0 remains stable when the parameter ω1 varies from 0 to
1. The basic reproductive ratio R0 markedly reduces when the parameter ω2 tends to 1. Especially, it can be seen that the
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Fig. 9. The effect of each quarantine parameter in the basic reproductive ratio R0 .

Fig. 10. The three-dimensional phrase portraits of the basic reproductive ratio R0 with effect of each pair of quarantine parameters.

isolation of exposed nodes is not enough for eliminating the disease in the network. Indeed, if we choose the parameter
c = 0 and fix these other parameters then the basic reproductive ratio R0 is approximately 1.7, which means that the
disease exists on the network. Thus, we derive the importance of the isolation of infectious sources from the network. In
addition, the three-dimensional phrase portraits of the threshold R0 with quarantine parameters are also given in Fig. 10.
From the below phrase portraits, we can conclude that the bigger the parameters are, the smaller the difference R0 − 1
is.

6.2. The dynamical behavior of the fractional SE1E2IQR epidemic model

In the following, based on the modified Adams–Bashforth–Moulton predictor–corrector method and Matlab program,
we will present the graphical representations and show the effectiveness of the proposed epidemic model. In Fig. 11, we
choose the fuzzy rule-based interaction parameter Mq such that R0 < 1. It is shown that the malware-free equilibrium
point E0 is globally asymptotically stable when R0 < 1. Indeed, even for a high rate of infectious nodes at the beginning,
the density of infectious nodes is dramatically decreasing while the density of susceptible nodes is sharply increasing after
hitting the lowest point at about t = 5. The changes of other states, in general, are similar. In the beginning, they steadily
go up and reach the peak. After that, all these states experience a slight decline and remain at the same level as times
increases. In addition, Fig. 11 points out that the smaller the constant Mq gets, the higher density the susceptible nodes
have, which means that the temporary reduction of connection when the network is attacked is one of the solutions to
prevent the network from the widespread of malware programs. Fig. 12 considers the case R0 > 1. In this case, we can
see that despite a high rate of the susceptible population at the beginning, the density of susceptible nodes experiences a
dramatic drop and reaches the lowest point at t = 20. After that, this state stays unchanged during the time. In addition,
Fig. 12 shows that the epidemic disease is permanent on the network that allows the results of Theorem 5.4.

Furthermore, in order to evaluate the influences of node’s degree and node’s state change in stifling the infection, we
give the changes of susceptible state and infectious state of the fractional SE1E2IQR epidemic model overtime at some
different values of Mq, in which the dotted line represents for the result without using fuzzy logic and the solid lines
represent for the results with some different Mq. According to Fig. 13, we can conclude that the bigger Mq gets, the higher
density of infectious nodes and the lower density of susceptible nodes. Especially, the network-based epidemic model
without using fuzzy logic experienced the highest density of infected nodes and the least density of susceptible nodes
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Fig. 11. The time series of S(t), E1(t), E2(t), I(t), Q (t) and R(t) with R0 < 1.

Fig. 12. The time series of S(t), E1(t), E2(t), I(t), Q (t) and R(t) with R0 > 1.

Fig. 13. The influence of fuzzy rule-based transmission parameter Mq to the densities of susceptible and infectious states.

compared with the one with fuzzy logic. Hence, we can conclude that the use of fuzzy logic can better describe the disease
transmission on complex networks.
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Fig. 14. The comparison of the node’s densities in various states of some epidemic models.

In Fig. 14, we discuss the dynamic behavior of the proposed fractional SE1E2IQR epidemic model compared with
three fractional epidemic models: SIR, SEIR, and SIQR epidemic models. We can see that in all given epidemic models,
the densities of infectious nodes are decreasing, in which the infectious nodes in the SE1E2IQR model experience the
most rapid decline compared with three other epidemic models. In the SIR epidemic model, the decrease of infectious
nodes is lower than in other models due to the absence of quarantine treatments for infected individuals. Conversely,
a noticeable reduction in the densities of infectious nodes can be seen in SIQR and SE1E2IQR epidemic models due to
the use of quarantine compartment. Especially, in the SE1E2IQR epidemic model, the total population of infected nodes is
classified into three classes: exposed state of type 1, exposed state of type 2 and infectious state. Next, by using appropriate
treatments, we isolate sensor nodes containing malware from the network at rates ω1, ω2 and c , respectively. Here, since
not only infectious nodes but also exposed nodes are also moved out of the network, we can reduce considerably the
number of infectious nodes in the network and that is also the reason why the density of infectious nodes in the SE1E2IQR
model is lower than one in the other models. In conclusion, the biggest difference between the plot of SE1E2IQR epidemic
model and the plots of other epidemic models is that the quarantine will increase the number of susceptible nodes and
decrease the number of infectious nodes and infected but not infectious nodes at the end, which are consistent with
reality.

Figs. 15 and 16 depict the dynamic for some cases of fractional order β of the fractional SE1E2IQR epidemic model
(1) for R0 < 1 and R0, respectively. We have observed that if we increase the value of parameter β , the type 1-exposed
E1(t), the type 2-exposed E2(t) and infectious individuals I(t) goes down slightly. It should be noted that the increasing
of fractional-order β will reduce the spread of malware in populations.

Figs. 17–19 show the effect of quarantine parameters c , ω1 and ω2 to the dynamics of fractional SE1E2IQR epidemic
model. It is well-known that when the network is highly attacked by different types of malware programs, quarantine
is one of the effective treatments besides immunization. Here, we can see that the isolation of infected states plays an
essential role in stifling the number of infectious nodes and rising the numbers of susceptible and recovered nodes. Indeed,
from the three below figures, as the quarantine rates are decreasing, the densities of susceptible nodes are moderately
increasing while the density of infectious nodes experienced a noticeable decline. The obtained simulation results agree
with real-world situations.

7. Conclusions

In order to illustrate the influence of heterogeneity in contact patterns and predict the effectiveness of quarantine
strategy for preventing the malware spreading, we propose and analyze a network-based fractional SE2E2IQR epidemic
model with a fuzzy infection on wireless sensor network, that is known as an EABA scale-free network. By using the
next-generation method, we obtain an important threshold in epidemic control, namely the basic reproductive ratio R0.
After that, the epidemic dynamics of the proposed model are studied mathematically. Indeed, by the mean of Lyapunov’s
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Fig. 15. The effects of fractional-order derivative to the epidemic model with R0 < 1.

Fig. 16. The effects of fractional-order derivative to the epidemic model with R0 > 1.

indirect method, we show that the malware-free equilibrium point E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1. Next, by using Lyapunov’s direct method with an appropriate Lyapunov function V(x(t)), the globally
asymptotic stability of the malware-free equilibrium point E0 is obtained. However, it is shown that it cannot eliminate
the malware program in the network unless that the basic reproductive ratio is decreased below a lower level such that
R0 < R̃0 < 1. Moreover, in the case R0 > 1, we also point out the unique existence of the epidemic equilibrium point
E∗. In addition, at R0 = 1, the proposed fractional SE2E2IQR epidemic model always has a forward bifurcation. On the
other hand, from the numerical simulation results, we can evaluate the importance of the model’s parameters in R0 via
sensitivity indices given in Section 6.1. Moreover, the effects of quarantine treatments and using fuzzy rule-based infection
have been discussed.

In further research, it is planned to verify the applicability of the proposed fractional epidemic model on some particular
heterogeneous complex networks such as Facebook, Instagram or Wireless sensor network, and some related qualitative
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Fig. 17. The portrait phrase between Infectious state and other states with different values of c.

problems such as stabilizability or control problem. Moreover, the asymptotic behavior of endemic equilibrium E∗ is also
an interesting question that has not been mentioned in this work and can be further considered. Furthermore, motivated
by Li and Yousef [33], we intend to study the proposed problem with saturated treatment function instead of linear
treatment for better fitting with reality scenario.
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Fig. 18. The portrait phrase between Infectious state and other states with different values of ω1 .
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Appendix

Scale-free and preferential attachment are two characteristic properties of various real-world networks such as the
World Wide Web, information networks, sensor networks or networks of social users (see Fig. 20).

In Wireless Sensor Networks, it is known that sensor nodes are typically not rechargeable and hence, the residual
energy is rather an important parameter and should be carefully considered in preferential attachment. It is a fact that
when a new node joins in the network, it rationally wants to connect nodes with higher connections (i.e., higher degree),
and for the long connection, a new node would also prefer those nodes with larger residual energy. In the following, we
present briefly an introduction to the algorithms of Barabási Albert scale-free network and Energy-Aware Barabási Albert
scale-free network (see Table 4).

Fig. 19. The portrait phrase between Infectious state and other states with different values of ω2 .
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Fig. 20. The scale-free network.

Table 4
The BA network model and EABA network model.

The BA network model The EABA network model

Initialization The network contains an isolated
set of N0 nodes and assume that
their links are chosen arbitrarily
providing that each node has at
least one link

The network contains an isolated
set of N0 nodes and assume that
their links are chosen arbitrarily
providing that each node has at
least one link

Network
growth

At each time-step, we add a new
node with m links that connect
the new node to m nodes of the
network. After t time-steps, the
BA network model generates a
network with N = t + N0 nodes
and N0 + mt links.

At each time-step, we add a new
node with m links that connect
the new node to m nodes of the
network. After t time-steps, the
EABA network model generates a
network with N = t + N0 nodes
and N0 + mt links.

Preferential
attachment

The probability that a link of new
node connects to an old node i is
proportional to the degree pi of
the node i and is computed by

P(i) =
pi∑
j

pj
.

In addition, the probability that
a node has k edges follows the
power-law distribution P(k).

A new node connects to m old
nodes to form new edges with a
probability P(i) proportional to
both the degree and the residual
energy of the node i

P(i) =
λdpi∑
j

pj
+

λeEi∑
j

Ej
,

where λd + λe = 1, 0 ≤ λd, λe ≤ 1
are tunable parameters, pi and Ei
are the degree and residual energy
of the node i, respectively.

Remark A.1. In the probability formula that a link of a new node connects to the old node i, there are two adjustable
parameters λd and λe, which represent the connectivity degree and residual energy of the node i. Their values play an
important role in the structure of the network. If λd > λe then the inter-connectivity among nodes dominates the network
structure, otherwise, the residual energy dominates the network structure. Especially, if λd = 1 and λe = 0 then the EABA
network model becomes the well-known BA network model, while in the case λd = 0 and λe = 1, only residual energy
decides the network structure and all sensor nodes are in balanced energy consumption state, that makes the lifetime of
WSNs improved significantly.

Remark A.2. In EABA network model, the topology of network is dominated by not only the inter-connectivity pi but
also the residual energy of sensor node. Here, the residual energy of a sensor node i is determined by

Ei = E0 − pi△E,

where E is the initial energy of node and △E is the loss energy used for establishing one link for each node. Thus, the
total residual energy of all nodes at a time-step t can be rewritten as∑

i

Ei =

∑
i

(E0 − pi△E) = (N0 + t)E0 − 2mt△E,

where N0 + t is the number of sensor nodes at the time-step t and 2mt is the total degree.
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Abstract

For understanding the influence of malware attacking on complex heterogeneous networks, this work studies a fractional
network-based SIRS epidemic model with fuzzy transmission and saturated treatment function. Firstly, we apply
the next-generation method to obtain the basic reproductive ratio R0, that is an important threshold value in the
investigation of asymptotic behavior of the proposed epidemic model. The obtained theoretical results indicates that
the value R0 significantly depends on the topology structure of the underlying network and the malware load. In
addition, we give a threshold value R̃0 > R0 that not only determines the existence of endemic equilibrium E∗ but also
ensures the clean of malware programs on the network. At last, the sensitivity analysis of the threshold value R0 and
some graphical simulations are presented to illustrate for the theoretical results.

Keywords: Fractional network-based epidemic model, fuzzy transmission, saturated treatment function, basic repro-
duction number, malware-free equilibrium, endemic equilibrium, asymptotic stability.

1 Introduction

Recently, many researchers have used mathematical modeling based on complex networks to study the spreading of
malicious objects in various populations. This approach is known as an effective tool, that helps us to better understand
the mechanism of epidemic diseases, to predict the evolution and influence of those diseases on the networks and decide
whether they are epidemic or non-epidemic. It is well-known that the nature of epidemic models is the compartmental
model, that is, the whole population is divided into some compartments and each compartment contains a number of
individuals that share the same epidemiological state. In classical model, when the whole population is small and well-
mixed, the rate of disease-causing contacts is often supposed to be equal. This assumption makes the model’s evaluation
more simply and tractable. However, it is un-realistic when the population is sufficiently large. Indeed, in many kinds
of complex networks such as the Internet, Facebook, Instagram social networks, sensor network and biological chain
network, etc., the connectability of different nodes on the networks is certainly un-similar and of course, the infections
of malware programs to these nodes are also not the same. Therefore, there is a need to take into consideration the
contact heterogeneity of complex networks when mathematically modeling epidemic models of malware program on the
networks. Recently, various epidemic models with network-based settings have been analyzed for better understanding
the dynamical behavior of epidemic diseases. Indeed, the paper [29] is known as a meaning pioneer work in this topic.
This paper presented a study on network-based SIS epidemic model on scale-free network and carried out a detailed
study with both analytical and numerical results of the proposed model. The most important contribution is the
finding of a threshold value for which the epidemic is absent and the corresponding dynamical behavior. In the paper
[12], Huo et al. proposed a three-compartmental epidemic model with susceptible, infected and recovered states to
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describe the virus infection on scale-free network. Firstly, the basic reproduction number R0 was evaluated to study
some characteristic properties of the proposed model. After that, by establishing an appropriate Lyapunov function,
the authors proved the importance of the number R0 in the study of asymptotic behavior of endemic equilibrium. In
an other work, in order to better describe the realistic scenario when the number of infected individuals may exceed the
treatment capacity, Li and Yousef [18] introduced the saturated treatment function in their work. After formulating a
network-based SIRS epidemic model with saturation, the paper [18] calculated the basic reproduction number R0 and
applied it to investigate asymptotic stability of equilibria, the backward bifurcation at R0 = 1. A novelty of this work
is the use of saturated treatment function instead of linear treatment function, that can be applied for our considered
model in future work. In the paper [19], Li et. al. introduced a SIRS epidemic model to describe the virus propagation
on heterogeneous network. This works proved that the presence or absence of the disease on network completely
depends on the value of basic reproduction number R0, i.e., the virus-free equilibrium is globally asymptotically stable
if R0 < 1, while if R0 > 1 then it is unstable. Next, the work [22] introduced an SIS model with limited treatment
capacity on adaptive networks in order to study the effect of anti-virus treatments on epidemic spreading. Firstly, the
author derived the existence condition of backward bifurcation or forward bifurcation at the disease-free equilibrium.
Then, they discussed the effect of bifurcation direction occurring at the disease-free equilibrium to the bi-stability
of endemic equilibria and the elimination of epidemic disease of the model. The obtained results are novelty and
interesting, however, the proposed model will be a better description for real-world network if it is extended to the
case of network-based setting. Moreover, complex heterogeneous epidemic models are also applied for studying the
information diffusion on the networks. For example, the rumor propagation on scale-free network was also studied by
Zan et. al. [32], in which the authors formulated an SICR epidemic model and discussed the asymptotic stability of the
model’s equilibrium points. The contribution of this work is the introduction of a new compartment of counterattack to
stifle the rumor propagation. In a recent work, Hosseini and Zandvakili [11] proposed a mathematical SEIRS-C model
to describe the rumor spreading on social network. The highlighted contribution of this paper is the introduction of a
new compartment (C) to study the effects of counter-attack factor in the rumor control. In addition, the use of fuzzy
logic to express the transmission rate is also a novelty of this paper. After establishing the network-based SEIRS-C
epidemic model, this paper presented the procedure to evaluate the basic reproductive ratio R0 and discussed the local
asymptotic stability of disease-free equilibrium point of the proposed model.

Fractional differentiation and fractional integration, or fractional calculus in general, are considered as the effective
tools for characterizing the behaviors of a large category of complex dynamical systems that the systems with integer
order cannot be applied. With a long history of development, numerous studies have proved that fractional calculus
has a considerable advantages and superiority when modeling many non-local phenomena, the processes with memory
and hereditary properties or the motions in viscoelasticity environments. Beside the rapid popularization of fractional
calculus, the study of fractional dynamical systems has been paid lots of attentions by researchers and achieved a lot of
noticeable results in various fields of basic sciences and engineering such as electrical circuits, fluid dynamics, biological
models, and so forth. On the other hand, with the introduction of Lyapunov function method for fractional differential
systems (see [14]), the stability analysis of fractional differential systems has also attracted a lot of attentions. Due
to the better ability in modeling and data-fitting, fractional calculus has been also applied to study the fractional
epidemiology theory and applications. Note that most of studies in fractional epidemic models described the disease
transmission by using fractional differential systems in Caputo sense. Then, it was proved that the obtained epidemic
model can provide a better estimation for infection processes, as well as obtain the interesting differential equations
from a mathematical viewpoint. However, we must face to a natural question that does the change in the order of
derivative automatically establish consistent models w.r.t. parameters? Fortunately, the authors of [4] proved that this
cannot happen in general. However, to the best of our knowledge, there have only a few studies on network-based
epidemic models with fractional-order and related problems. For instance, Graef et. al. [9] proposed a fractional-order
SIR epidemic model with demography to examine the user adoption and abandonment of online social networks, where
adoption is analogous to infection, and abandonment is analogous to recovery. After that, they discussed the existence
and uniqueness of non-negative solutions of the proposed model as well as the existence and stability of its equilibrium
points by using the Jacobian matrix technique and the Lyapunov function method. In particular, a threshold Rα

0 was
established to prove that the user-free equilibrium E0 is locally asymptotically stable if Rα

0 < 1 and the user-prevailing
equilibrium E∗ is globally asymptotically stable if Rα

0 > 1. The theoretical results were then demonstrated by a case
study of fitting the considered model to some Instagram user data. However, it is a fact that in reality, the network of
Instagram users is not well-mixed and it should be taken into consideration the heterogeneity of the network for better
description. In the literature [13, 16, 7], the authors proposed to study different network-based epidemic models with
fractional derivative. One of common characteristics of these models are the use of linear treatment function/linear
immunization function, however, in reality, since each population or network has its maximal capacity for the treatment
of a disease, the treatment function is often proportional to the number of the infected individuals when the capacity
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of treatment is not reached, and otherwise, takes the maximal saturated level. Therefore, in this work, we propose to
use a treatment function of saturated form for better description of the saturation phenomena.

Since the nature of almost natural phenomena is vagueness and uncertainty, the mathematical modeling of real-world
epidemic diseases must always accept the presence of uncertainties. However, to our best knowledge, there have been
very few studies considering the environmental uncertainty in any epidemic model. It is well-known in many biological
models that the epidemic disease occurs only if the viral load reaches a certain threshold and obviously, the concept of
viral amount is quite difficult to express by exact or certain value. This leads to the use of fuzzy set theory initiated by
Zadeh [31] to get the better modeling of epidemic diseases in realistic situations. In the recent decades, fuzzy set theory
has achieved a lot of significant results in the theory and application of fractional differential equations, see [6, 5, 8, 10].
Despite of the tremendous potential in the modeling of epidemic models, the uses of fuzzy sets in epidemiology theory
are not frequent. Some noticeable applications of fuzzy sets in epidemic models can be found in Dong et. al. [6, 5],
Mahato et. al. [23], Mondal et. al. [25], Nandi et. al. [27].

Motivated by aforesaid, this work is devoted to study a fractional network-based epidemic model with three com-
partments: Susceptible (S), Infectious (I) and Recovered (R) with fuzzy transmission and the use of saturated treatment
function. The main contributions of this work can be highlighted as follows:

(i) Based on SIRS epidemic model, we formulate a new epidemic model with fractional-order derivative in the form
of mean-field reaction rate equations, namely fractional network-based SIRS epidemic model, for describing and
analyzing the spread of malicious objects on scale-free network. Especially, the proposed model considers a
non-linear saturated treatment function for the better fitting with real-world situations. Indeed, in many real-
world networks, there is often a maximal capacity for the treatment or immunization of an epidemic disease and
moreover, when the number of infected cases take the maximal saturated level, this certainly leads to the situation
that there are a number of infected being delayed for treatment. Hence, the assumption that the treatment rate is
proportional to the number of infected individuals in some classical models seems less realistic. Therefore, based
on the approach in [20, 33], this work proposes to use a nonlinear treatment function.

(ii) Due to the fact that the disease infection often occurs only if the amount of malware program on the network
exceeds a certain threshold value and reaches a saturation level at a finite malware load, we propose to use fuzzy
membership function to represent the transmission rate σk, in which the infection happens only if the malware
load on the network reaches a threshold value. Moreover, this work also discusses the effect of node’s degree on
the value of transmission rate.

(iii) Based on the next-generation matrix method, we analytically compute the basic reproduction number R0, that
is an important threshold value in epidemiology theory. However, this work also indicates that the proposed
epidemic model can’t reach the endemic equilibrium state if the basic reproduction number R̃0 < 1. In addition,
it is also proved that the existence and uniqueness of endemic equilibrium E∗ depends on not only the basic
reproduction number R0 but also the other parameters due to the effect of saturated treatment function.

(iv) By using the linearization method and the mathematical induction principle, we give a criteria for the local
asymptotic stability or un-stability of malware-free equilibrium E0 that are related to the basic reproduction
number R0. Next, by applying the direct Lyapunov functional method with an appropriate Lyapunov function,
we can conclude that the attractivity of the equilibrium E0 depends upon a threshold value R̃0 > R0, which
proves that the condition R0 < 1 is not sufficient for eliminating the epidemic disease.

2 Model formulation

In this paper, we characterize the complex heterogeneous network by using Barabási-Albert scale-free network [1] to
get better description for the heterogeneity of malware program ’s propagation on the complex network. The structure
of Barabási-Albert scale-free network can be briefly summarized as follows:

• At the initialization, the scale-free network has a small number of fully connected vertices with N0 nodes;

• A new node with m links is added to the complex network after each time-step and linked to an old node i with

a probability P(ki) =
ki∑
j kj

, where the parameter ki is the degree (connectivity) of the ith-node.
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• When the complex network attains the scale-free stationary state, it can be seen that P(k) = ck−3 is the power-law
probability distribution such that a node has k connected links, where c is a parameter such that∑

k

ck−3 = 1.

2.1 The fuzzy transmission

In this work, assume that one infectious individual always comes to the contact of maximum one susceptible individual
so that the degree-dependent transmission rate of the kth-group σk = σk ≤ k. In addition, in order to describe the
heterogeneity on the complex network, we propose to represent the transmission rate σ as a function of the available
malware program. In particular, this parameter is proposed to describe through the following fuzzy set:

σ(τ) =


0 if τ ≤ τm

σ
τ − τm
τ0 − τm

if τm < τ ≤ τ0

σ if τ0 < τ ≤ τM .

Here, we can see that there always exists a lower threshold τm for the malware propagation, that is, the disease infection
occurs only if the amount of malware program on the network must exceed τm, otherwise, the chance of transmission is
negligible. In addition, the value of τm would depend upon both environmental characteristics and nature of malware
program, that is reasonable for the choice of fuzzy membership function for transmission rate. Next, there has an upper
threshold of malware load, say τ0, beyond which the transmission rate reaches the maximum value σ(τ) = 1. From
τm to τ0, the transmission rate is assumed to vary linearly. Furthermore, assume that the malware load has an upper
bound, say τM . Moreover, since the nature of realistic phenomena is uncertainty, it is not natural to represent exactly
the model’s parameters by crisp values. For instance, in order to express the concept “amount of malware program”,
the use of linguistic variables seems to be more suitable. Thus, this work assumes that the malware load on the network
can be classified into three classes and use linguistic terms, namely “LOW (Al)”, “MEDIUM (Am)” and “HIGH (Ah)”,
to characterize for each class. Additionally, in each classification, based on the threshold values τm, τ0, τM , the malware
load is expressed by using fuzzy numbers (see Figure 1). This approach can be found in [25, 27].

Figure 1: The membership function of fuzzy transmission rate σ and linguistic variables of malware load

2.2 The formulation of the fractional network-based SIRS epidemic model

In SIR epidemic model, we assume that each node can belong to one of three states: Susceptible state (S), Infectious
state (S) and Recovered state (R). In order to taking into consideration the heterogeneity of scale-free networks, the
whole population can’t be well-mixed and the rate of disease-causing contacts must be varied depending upon the node’s
connectivity. Indeed, based on the number of connected links a node has per unit time, we classify the whole population
into n groups and assume that nodes in a same group are dynamically equivalent. Denote Sk(t), Ik(t), and Rk(t) by
the densities of susceptible, infectious and recovered nodes with degree k at time t, respectively for k = 1, 2, . . . , n and
denote Nk(t) by the total number of nodes with degree k at time t. The flowchart of malware propagation of the SIRS
epidemic model in the kth-group is given in Figure 2.
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Figure 2: The flowchart of malware propagation among compartments: Susceptible (S), Infectious (I), Recovered (R)

In several decades, fractional dynamical systems have proved their importance in real-world modeling due to the
effective memory function of fractional derivatives, that has been widely used to model many non-local physical phe-
nomena such as electric flows in signal propagation or processes in the porous media. Motivated by aforesaid, this
work is devoted to study a network-based epidemic model governed by the following fractional mean-field reaction rate
equations: 

C
0 D

β
t Sk(t) = Λ− σk(τ)Sk(t)Θ(t)− µSk(t) + ωRk(t)

C
0 D

β
t Ik(t) = σk(τ)Sk(t)Θ(t)− µIk(t)−

rIk(t)

1 + γΘ(t)

C
0 D

β
t Rk(t) =

rIk(t)

1 + γΘ(t)
− (µ+ ω)Rk(t),

(1)

with the initial conditions

Sk(0) = S0
k, Ik(0) = I0k , Rk(0) = R0

k, (2)

in which the notation C
0 D

β
t (·) denotes for the Caputo fractional derivative of order β ∈ (0, 1] of state functions (see

Definition 7.2 in Appendix). The meanings of the model’s parameters are given in Table 1:

Table 1: The model’s parameters

No Parameter Description

1 σk(τ) The degree-dependent fuzzy transmission rate

2 r The cure rate

3 µ The natural death rate

4 Λ The natural birth rate
5 ω The rate in which a recovered node turns into susceptible

Furthermore, since the un-correlation of node’s connectivity on the network is taken into consideration, the probability
that a given link is connected to an infectious node can be expressed by the following function

Θ(t) =
1

⟨k⟩

n∑
k=1

kP(k)Ik(t),

where ⟨k⟩ =
∑n

k=1 kP(k) is known as the mean degree of the network. On the other hand, since the fact that an
anti-malware program only attains a certain maximal treatment capacity for each epidemic disease, Zhang et. al. [33]
introduced a pioneer work on the study of epidemic model with a staged treatment function h(I) = rI

1+γI compatible
with the treatment capacity. This treatment function also shows its advantage in measuring the extent of the influence
of the infected being delayed for treatment by using a parameter γ in treatment function. This makes our epidemic
model seem more reasonable than the case using the linear function. In this paper, the terms rIk

1+γΘ represents for the

recovery with treatment of the kth-infectious group.
One can easily show that the solution of the fractional differential system (1) with the initial condition (2) is defined

for all t > 0 and k = 1, 2, . . . , n. From the view point of epidemiology, we only need to focus on the positiveness and
the positively invariant set of solution. So we assume that

Sk(0) > 0, Ik(0) ≥ 0, Rk(0) ≥ 0, k = 1, 2, . . . , n.
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Denote

x(t) = (S1(t), I1(t), R1(t), . . . , Sn(t), In(t), Rn(t))
⊤
,

Σ+ =

{
x(t) ∈ R3n

+ : Sk + Ik +Rk ≤ Λ

µ
, k = 1, n

}
.

Due to the presence of epidemic disease on the network and by definition of the probability function Θ(t), we assume
that Θ(t) > 0 for each t ≥ 0.

Lemma 2.1. Assume that x(t) is a solution of the fractional network-based SIRS epidemic model (1) with the initial
condition (2) and x(0) belongs to Σ+. Then, for all t > 0, the solution x(t) belongs to Σ+.

Proof. By contrary, assume that for each k = 1, n, there is a t0 > 0 such that Sk(t) = 0 at t = t0, Sk(t) > 0 for all
0 ≤ t < t0 and Sk(t) < 0 for all t0 < t ≤ t0 + ε0 with sufficiently small ε0 > 0. Then, we consider two following cases:

Case 1: If Ik(t) ≥ 0 for all t ≥ 0, then we have

C
0 D

β
t Rk(t) =

rIk(t)

1 + γΘ(t)
− (ω + µ)Rk(t) ≥ −(ω + µ)Rk(t).

Then, by applying fractional comparison principle (Lemma 10, [18]), it implies that the function

Rk(t) ≥ Rk(0)Eβ

(
−(ω + µ)tβ

)
≥ 0,

for all t ≥ 0. As a result, at t = t0, we have C
0 D

β
t Sk(t)|t=t0= Λ + ωRk(t0) > 0. By using Lemma 7.8 for a = 0 and

t = t0 + ε0, it implies that Sk(t0 + ε0) = Sk(0) +
εβ0

Γ(β)
C
0 D

β
t Sk(t)|t=ξ, where t0 ≤ ξ ≤ t0 + ε0 and 0 < ε0 ≪ 1 is small

enough such that C
0 D

β
t Sk(t)|t=ξ ≥ 0. This means Sk(t0 + ε0) > 0, which contradicts our assumption.

Case 2: If there exists a time t1 > 0 such that Ik(t) = 0 at t = t1, Ik(t) > 0 for all t ∈ [0, t1) and Ik(t) < 0 for all
t1 < t ≤ t1 + ε1 with sufficiently small ε1 > 0, then our proof is proceeded in two following sub-cases:
Sub-case 1: If t1 ≥ t0 then by using similar arguments as in Case 1, we can prove that the functions Ik(t), Rk(t) are all
non-negative on [0, t1] and Sk(t0 + ε0) > 0, which leads to a contradiction.
Sub-case 2: If t1 < t0 then we have S(t1) > 0 and Θ(t1) > 0. Moreover, at the time t = t1, we receive

C
0 D

β
t Ik(t)|t=t1= σk(τ)Sk(t1)Θ(t1) > 0.

Then, we can choose 0 < ε1 ≪ 1 such that C
0 D

β
t Sk(t)|t=ξ ≥ 0 with ξ ∈ [t1, t1 + ε1]. Next, by using Lemma 7.8 for a = 0

and t = t1 + ε1, we obtain

Ik(t1 + ε1) = Ik(0) +
εβ1

Γ(β)
C
0 D

β
t Ik(t)|t=ξ.

It implies that Ik(t1 + ε1) > 0, which contradicts our assumption. Therefore, we can conclude that Sk(t) > 0 is always
positive for all t ≥ 0. Finally, by doing similar arguments, we can also prove that the functions Ik(t) and Rk(t) are all
non-negative for all t ≥ 0 and k = 1, n.

Next, by using the second assumption, we have Nk(0) = Sk(0) + Ik(0) +Rk(0) ≤
Λ

µ
. By summing up all fractional

differential equations of the system (1), we immediately obtain

C
0 D

β
t Nk(t) = Λ− µNk(t). (3)

By applying Example 4.9 in [15], the general solution of the fractional differential equation (3) is given by

Nk(t) = Nk(0)Eβ(−µtβ) + Λ

∫ t

0

Eβ,β(−µ(t− τ)β)

(t− τ)1−β
dτ = Nk(0)Eβ(−µtβ) + ΛtβEβ,β+1(−µtβ).

Then, by choosing α1 = β, α2 = 1 and x = −µtβ , Lemma 7.5 implies that

Nk(t) = Nk(0)Eβ(−µtβ) + ΛtβEβ,β+1(−µtβ) = Nk(0)Eβ(−µtβ) +
Λ

µ

[
1− Eβ(−µtβ)

]
.
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Since x(0) ∈ Σ+, it implies that Nk(0) ≤
Λ

µ
and it should be noted that 0 ≤ Eβ(−µtβ) ≤ 1 for all t ≥ 0. Thus, we have

Nk(t) ≤
Λ

µ
Eβ(−µtβ) +

Λ

µ

[
1− Eβ(−µtβ)

]
=

Λ

µ
,

which means that Σ+ is a positively invariant set for the fractional network-based epidemic model (1).

3 The basic reproduction number R0 and equilibrium points

3.1 The evaluation of basic reproduction number R0

It can be easily seen that the fractional network-based SIRS epidemic model (1) admits a malware-free equilibrium

(MFE) E0 = (
Λ

µ
, 0, 0, . . . ,

Λ

µ
, 0, 0)︸ ︷︷ ︸

3n

. Now, our aim is to find a threshold value which plays a key role in not only the

unique existence of endemic equilibrium E∗ but also the local asymptotic behavior of the model (1). This value is called
basic reproduction number and denoted by R0. In epidemiology, the basic reproduction number R0 is the number
of cases directly caused by an infected individual throughout its infectious period. The essential significance of R0

are determining if an infectious disease can spread in a population and determining the proportion of the population
should be immunized through vaccination to eliminate the epidemic disease. Note that R0 is not a biological constant
for a pathogen as it is also affected by other factors such as environmental conditions and the behavior of the infected
population. In order to evaluate the basic reproduction number, we propose to apply the next-generation matrix method
introduced by Diekmann et al. [2]. It should be noted that the infection causing compartment of the proposed model
is the compartment (I). Therefore, by using the second equation of the system (1), we find out that the gain term and
lost term for the epidemic model are as follows:

• The gain term is σk(τ)Sk(t)Θ(t).

• The loss term is µIk(t) +
rIk(t)

1 + γΘ(t)
.

Then, the rate matrix F of new infections appearance at the equilibrium E0 can be given by

F =
σ(τ)Λ

µ⟨k⟩


1P(1) 2P(2) · · · nP(n)
2P(1) 22P(2) · · · 2nP(n)

...
...

. . .
...

nP(1) 2nP(2) · · · n2P(n)

 =
σ(τ)Λ

µ⟨k⟩


1
2
...
n

 [P(1) 2P(2) · · · nP(n)
]
,

and the transition matrix V of infected states is V = (µ + r)In, where In is the n × n identity matrix. The basic
reproduction number R0 is then the largest eigenvalue of the matrix FV−1 given by

σ(τ)Λ

µ(µ+ r)⟨k⟩


1
2
...
n

 [P(1) 2P(2) · · · nP(n)
]
.

Therefore, we directly get that R0 =
σ(τ)Λ⟨k2⟩
µ(r + µ)⟨k⟩

, where ⟨k2⟩ =
n∑

k=1

k2P(k).

Remark 3.1. According to the formula of R0, we can conclude that the threshold value R0 is directly proportional to

the network structure’s parameter
⟨k2⟩
⟨k⟩

. This means that the network’s heterogeneity can directly affect to the malware

widespread on the network.
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3.2 The existence of an endemic equilibrium

The following theorem presents an interesting result on the existence and uniqueness of an endemic equilibrium (EE)
of the network-based epidemic model (1).

Theorem 3.2. Assume that Λ ≤ µ
(
1 + r

(µ+ω)(1+γ)

)
. Then, the following assertions are fulfilled:

1. If R̃0 < 1 then the fractional network-based SIRS epidemic model (1) doesn’t have any endemic equilibrium.

2. If R0 > 1 then the fractional network-based SIRS epidemic model (1) admits at least one endemic equilibrium E∗
given by

E∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n),

where

S∗
k =

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
I∗k , R∗

k =
rI∗k

(µ+ ω)(1 + γΘ∗)
, Θ∗ =

1

⟨k⟩

n∑
i=1

iP(i)I∗i ,

I∗k =
Λσk(τ)Θ

∗

µ
[
µ+ σk(τ)Θ∗ + rσk(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] .
Moreover, if γ <

σ(τ)

µ+ ω
then the endemic equilibrium E∗ of the network-based epidemic model (1) is unique.

Proof. Assume that E∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) is an endemic equilibrium of the fractional network-based SIRS

epidemic model (1). Then, for each k = 1, 2, . . . , n, the triple (S∗
k , I

∗
k , R

∗
k) satisfies the following system

σk(τ)SkΘ− µIk − rIk
1 + γΘ

= 0

rIk
1 + γΘ

− (µ+ ω)Rk = 0

Sk + Ik +Rk =
Λ

µ
,

(4)

where Θ =
1

⟨k⟩

n∑
i=1

iP(i)Ii. Next, by expressing the variables Sk, Rk in the two first equations of the system (4) in the

terms of Ik, we immediately get

S∗
k =

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
I∗k , R∗

k =
r

(µ+ ω)(1 + γΘ∗)
I∗k .

After that, we substitute the expressions of S∗
k and R∗

k into the last equation of the system (4), we receive[
1 +

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
+

r

(µ+ ω)(1 + γΘ∗)

]
I∗k =

Λ

µ
,

or equivalently, I∗k =
Λσk(τ)Θ

∗

µ
[
µ+ σk(τ)Θ∗ + rσk(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] . Next, by substituting I∗k into the expression of the

function Θ(t), the equation Θ∗ =
1

⟨k⟩

n∑
i=1

iP(i)I∗i becomes the following self-consistency equation

Θ∗ =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)Θ∗

µ
[
µ+ σi(τ)Θ∗ + rσi(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] . (5)

It should be noted that the self-consistency equation (5) always admits the trivial solution Θ ≡ 0. Now, we aim to
determine a sufficient condition for which the equation (5) has a solution Θ∗ ∈ (0, 1). Firstly, we define

f(Θ) =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ σi(τ)Θ + rσi(τ)Θ

(µ+ω)(1+γΘ) +
r

1+γΘ

] .
Here, we can see that
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• The function f(Θ) is continuous on the closed interval [0, 1] and differentiable on the open interval (0, 1).

• f(0) =
Λσ(τ)

µ(r + µ)⟨k⟩

n∑
k=1

k2P(k) = R0.

• For each Θ ∈ [0, 1], we have f(Θ) <
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)
µ2

= R̃0.

• At Θ = 1, we have

f(1) =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ r

1+γ + σi(τ)
(
1 + r

(µ+ω)(1+γ)

)] <
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µσi(τ)
(
1 + r

(µ+ω)(1+γ)

) = 1.

Then, the non-trivial solution of the equation (5) is the solution of the following equation

1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ σi(τ)Θ + rσi(τ)Θ

(µ+ω)(1+γΘ) +
r

1+γΘ

] = 1. (6)

Note that if R̃0 ≤ 1 then it implies that f(Θ) < R̃0 ≤ 1. As a result, there doesn’t exist any value Θ ∈ [0, 1] such that
the equation (6) holds, or equivalently, there doesn’t exist any endemic equilibrium when R̃0 ≤ 1. The first assertion
of the theorem is completed.

By using the assumption R0 > 1, it directly follows that f(0) > 1. Therefore, by virtue of Intermediate Value
theorem, the equation (6) has at least one solution Θ ∈ (0, 1), that is also the non-trivial solution of the equation (5).
As a consequence, the solution Θ∗ ∈ (0, 1) of the self-consistency equation (5) will solve the endemic equilibrium E∗.
In order to prove the uniqueness of the endemic equilibrium E∗, let us compute

d

dΘ
f(Θ) =

d

dΘ

{
n∑

k=1

Ak(1 + γΘ)

Bk(Θ)

}
=

n∑
k=1

γAkBk(Θ)−Ak(1 + γΘ) d
dΘBk(Θ)

B2
k(Θ)

,

where for simplicity in representation, we denote

Ak =
Λσ(τ)k2P(k)

µ⟨k⟩
, Bk(Θ) = (1 + γΘ)(µ+ σk(τ)Θ) + r +

rσk(τ)Θ

µ+ ω
.

By some fundamental computations, we obtain

d

dΘ
f(Θ) =

n∑
k=1

rγAk − rσk(τ)Ak

µ+ω − σk(τ)Ak(1 + γΘ)2

B2
k(Θ)

=
n∑

k=1

rAk

(
γ − σk(τ)

µ+ω

)
− σk(τ)Ak(1 + γΘ)2

B2
k(Θ)

.

Therefore, if γ ≤ σ(τ)

µ+ ω
then the derivative

d

dΘ
f(Θ) < 0 for all Θ ∈ [0, 1] and hence, the equation (6) has a unique

solution Θ ∈ (0, 1). The proof is completed.

4 The asymptotic behavior of malware-free equilibrium E0

4.1 The local asymptotic stability

Theorem 4.1. The malware-free equilibrium E0 of the fractional network-based SIRS epidemic model (1) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Based on the stability theory of fractional dynamical systems, the local asymptotic stability of the malware-free
equilibrium E0 can be determined by finding the modulus of eigenvalue’s arguments of Jacobi matrix J(E0). Let us
consider the Jacobi matrix at E0 of the epidemic model (1) in the following form

J(E0) =


J11 J12 · · · J1n
J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn


3n×3n

,
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where Jkk, Jkk are 3× 3-square matrices given by

Jkk =


σk(τ)kΛP(k)

µ⟨k⟩
− (µ+ r) 0 0

−σk(τ)kΛP(k)
µ⟨k⟩

−µ ω

r 0 −(ω + µ)

 , Jki =


σk(τ)ΛiP(i)

µ⟨k⟩
0 0

−σk(τ)ΛiP(i)
µ⟨k⟩

0 0

0 0 0

 (k ̸= i),

for each k, j = 1, n. Then, by applying the mathematical induction principle, the characteristic polynomial w.r.t. the
Jacobi matrix J(E0) can be given by

P(λ̃) = (λ̃+ µ)n(λ̃+ µ+ ω)n(λ̃+ µ+ r)n−1

(
λ̃+ (µ+ r)− 1

µ⟨k⟩

n∑
k=1

σk(τ)ΛkP(k)

)
.

According to Theorem 7.20 in [3], the malware-free equilibrium E0 is locally asymptotically stable if and only if all

eigenvalues
{
λ̃j

}
j=1,3n

of the Jacobi matrix J(E0) satisfy

∣∣∣arg (λ̃j

)∣∣∣ > βπ

2
, j = 1, 2, . . . , 3n.

It can easily verified that the characteristic equation P(λ̃) = 0 has 3n − 1 negative solutions, namely λ̃ = −µ with
multiplicity n, λ̃ = −(µ+ ω) with multiplicity n and λ̃ = −(µ+ r) with multiplicity n− 1. The last eigenvalue of the

characteristic polynomial P
(
λ̃
)
is

λ̃ = −(µ+ r) +
1

µ⟨k⟩

n∑
k=1

σk(τ)ΛkP(k) = (µ+ r)

(
Λσ(τ)

µ(µ+ r)⟨k⟩

n∑
k=1

k2P(k)− 1

)
= (µ+ r)(R0 − 1).

By using the assumption R0 < 1, we immediately deduce that eigenvalues of the Jacobi matrix J(E0) are all negative

and hence, their arguments arg
(
λ̃j

)
= π for all j = 1, 3n. In addition, since β ∈ (0, 1], we directly get that

∣∣∣arg (λ̃j

)∣∣∣ = π >
βπ

2
for all j = 1, 3n.

Therefore, by Theorem 7.20 in [3], we can conclude that the malware-free equilibrium E0 is locally asymptotically
stable. Otherwise, if R0 > 1 then the eigenvalue λ̃ = (µ + r)(R0 − 1) is real and strictly positive, i.e. it has zero
argument, and hence, the malware-free equilibrium E0 is unstable.

Remark 4.2. The main approach of Theorem 4.1 is based on linearization method and stability criteria for fractional
differential system in Theorem 7.20 in [3] related to modulus of eigenvalue’s arguments. By applying linearization
method, we get that the Jacobi matrix J(E0) is a square matrix of order 3n and then, the mathematical induction
principle follows that the matrix J(E0) has 3n − 1 negative eigenvalues and the last eigenvalue depending on the sign
of R0 − 1. Therefore, we can conclude that the basic reproduction number R0 plays a key role in the local asymptotic
behavior of the network-based epidemic model (1). At R0 = 1, since the eigenvalue λ̃ = (µ+ r)(R0 − 1) is zero then its
argument is undefined. By using the remark after Theorem 2 in [21], we can conclude that the malware-free equilibrium
E0 is stable but not asymptotically stable.

4.2 The global asymptotic stability

In the following, we discuss the global asymptotic stability of the malware-free equilibrium for the network-based
epidemic model (1). For this aim, we denote a threshold value

R̃0 =
Λσ(τ)⟨k2⟩

µ2⟨k⟩
.

Now, we will prove that R̃0 is the threshold value for which the malware-free equilibrium E0 is globally asymptotically
stable. Indeed, we have
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Theorem 4.3. If the parameter R̃0 satisfies R̃0 < 1 then the malware-free equilibrium E0 of the fractional network-
based SIRS epidemic model (1) is globally asymptotically stable.

Proof. Let x(t) = {(Sk(t), Ik(t), Rk(t))}nk=1 be a solution of the fractional network-based SIRS epidemic model (1). For
simplicity in representation, we denote

Sk := Sk(t), Ik := Ik(t),

Rk := Rk(t), Θ := Θ(t).

Now, we will apply the direct Lyapunov method to discuss the global asymptotic stability of the equilibrium E0. In
particular, we construct the Lyapunov function along the solution x(t) by a function V : Σ+ → R, given by

V(x(t)) =
1

⟨k⟩

n∑
k=1

kP(k)
{
Sk − Λ

µ
− Λ

µ
ln
(µSk

Λ

)
+ Ik +Rk

}

=
1

⟨k⟩

n∑
k=1

kP(k) {Ψ(Sk) + Ik(t) +Rk(t)} .

According to Remark 7.7, we directly get that Ψ(Sk) = Sk − Λ
µ − Λ

µ ln
(

µSk

Λ

)
is a non-negative function for all Sk > 0

and attains the global minimum at Sk =
Λ

µ
. In addition, based on the non-negativeness of the solution x(t) stated

in Lemma 2.1, it implies that the function V(x(t)) is non-negative definite with respect to malware-free equilibrium
E0. Next, by taking the fractional derivative in Caputo sense for the function V(x(t)) along x(t) and then, applying
Lemma 7.6, we receive

C
0 D

β
t V(x(t)) =

1

⟨k⟩

n∑
k=1

kP(k)
(
C
0 D

β
t Φ(Sk) +

C
0 D

β
t Ik + C

0 D
β
t Rk

)
=

1

⟨k⟩

n∑
k=1

kP(k)
[(

1− Λ

µSk

)
C
0 D

β
t Sk + C

0 D
β
t Ik + C

0 D
β
t Rk

]
,

where (
1− Λ

µSk

)
C
0 D

β
t Sk = 2Λ− σk(τ)SkΘ− µSk + ωRk − Λ2

µSk
+

σk(τ)ΛΘ

µ
− ωΛRk

µSk

= − µ

Sk

(
Λ2

µ2
− 2Sk

Λ

µ
+ S2

k

)
+

σk(τ)ΛΘ

µ
− σk(τ)SkΘ+ ωRk

(
1− Λ

µSk

)
, (7)

and

C
0 D

β
t Ik + C

0 D
β
t Rk = σk(τ)SkΘ− µIk − (µ+ ω)Rk. (8)

By combining two inequalities (7) and (8), we receive(
1− Λ

µSk

)
C
0 D

β
t Sk + C

0 D
β
t Ik + C

0 D
β
t Rk ≤ − µ

Sk

(
Λ

µ
− Sk

)2

+
σk(τ)ΛΘ

µ
− µIk + ωRk

(
1− ω + µ

ω
− Λ

µSk

)
.

For each t ≥ 0 and x(t) ∈ Σ+, note that − µ

Sk

(
Λ

µ
− Sk

)2

≤ 0 and ωRk

(
1− ω + µ

ω
− Λ

µSk

)
≤ 0. Hence, we have

C
0 D

β
t V(x(t)) ≤ 1

⟨k⟩

n∑
k=1

kP(k)
[
σk(τ)ΛΘ

µ
− µIk

]

= µΘ

[
σ(τ)

µ2⟨k⟩

n∑
k=1

Λk2P(k)− 1

]
(9)

= µΘ(R̃0 − 1).
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Thus, it implies that if R̃0 < 1 then C
0 D

β
t V(x(t)) < 0. In addition, C

0 D
β
t V(x(t)) = 0 if and only if

Sk =
Λ

µ
, Ik = Rk = 0, k = 1, 2, . . . , n.

The largest invariant set of
{
x(t) ∈ Σ+ : C0 D

β
t V(x(t)) = 0

}
is the singleton set {E0}. Therefore, by using Lemma 4.6

in [14], the proof is completed.

Remark 4.4. The key tool to study the global asymptotic stability of the malware-free equilibrium E0 is the choice of an
appropriate Lyapunov function V(x(t)). In general, the Lyapunov functions are often constructed in quadratic form or
in a special form associated with dynamic of the proposed differential systems. In this theorem, the use of non-negative
function Ψ(Sk) plays an important role to associate the negative definite property of the Caputo fractional derivative
C
0 D

β
t V(x(t)) with the value of the threshold R̃0. Some preceding works, also used this type of Lyapunov function, can

be found in [9, 13, 17, 19, 20].

Remark 4.5. By the inequality (9), we have

C
0 D

β
t V(x(t)) ≤ (µ+ r)Θ

[
Λσ(τ)

µ(µ+ r)⟨k⟩

n∑
k=1

k2P(k)− µ

µ+ r

]
≤ (µ+ r)Θ

(
R0 −

µ

µ+ r

)
.

This requires R0 ≤ µ

µ+ r
< 1 to ensure C

0 D
β
t V(x(t)) ≤ 0. Therefore, we can conclude that the condition R0 < 1 is

not sufficient enough to eliminate the epidemic disease on network. that is the reason why we give a threshold value
R̃0 > R0 to evaluate the global asymptotic stability of malware-free equilibrium E0.

5 Applications

Hand-Foot-Mouth Disease (HFMD) is a common infectious disease for children, especially children are under 5 years
old. From December 19th, 2020 to January 18th, 2021, Vietnam had 2, 901 cases of HFMD, that is 2.3 times higher than
the same period last year, see [34]. In this section, we will apply the proposed fractional network-based SIRS epidemic
model (1) for describing the dynamic of HFMD in the population of children below the age of 10. Here, since the HFMD
is infected from a child to another through direct contacts and it is obvious that the contact between children in reality
is not well-mixed, we will use Barabási-Albert scale-free network to describe the contact heterogeneity of children. We
assume that the maximum contact of a child is at his school with n = 20 and the probability that a randomly child
has degree k, i.e., he is in the contact with k other children, is given by P(k) = ck−3, where c is known as a balanced

parameter such that
20∑
k=1

ck−3 = 1. Indeed, since
20∑
k=1

P(k) = 1, it follows that the constant c = 0.8327 by using Matlab

computation. Moreover, the parameters of network structure ⟨k⟩ and ⟨k2⟩ are computed by MatLab program as follows:

• The parameter ⟨k⟩ =
50∑
k=1

ck−2 ≈ 1.3291 is the average degree of the network, that is, on the average, each child

in the network will contact with 1.3291 other children.

• The parameter ⟨k2⟩ =
n∑

k=1

ck−1 ≈ 2.9933 is the second moment of the node degree that measures the fluctuation

of the degree distribution.

Moreover, the used parameters of the epidemic model are given in Table 2. Here, all the parameter values are chosen
hypothetically due to the unavailability of real-world data.

Table 2: The used parameters in the SIRS epidemic model
Parameter Value Parameter Value

Λ 0.12 µ 0.05

σ 0.1 ω 0.06
r 0.8 γ 4
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5.1 The influence of the fuzzy transmission rate to R0

Since the transmission rate σk(τ) = kσ(τ) is represented as a function of viral load τ , the basic reproduction number
R0 then can be known as a fuzzy number w.r.t. the viral load. Based on the analysis results presented in Section III
and Section IV, the threshold value R0 has an essential role in the asymptotic behavior of the model. In the following,
we will discuss the influence of viral load to the threshold value R0 and the viral infection. We assume that the amount
of malware τ in the population has a linguistic meaning classified as “LOW”, “MEDIUM” and “HIGH”.

Case I. If the amount of viruses is “LOW”, i.e., the triangular fuzzy number Al = (τc − δ, τc, τc + δ) satisfies
τc + δ < τm, then the transmission rate σk(τ) = 0. In addition, it is clear that the basic reproduction number R0

then becomes zero, which means that the disease vanishes from the network, i.e., the malware-free equilibrium E0 is
asymptotically stable. This case can be understood that the disease is not enough to cause the infection or the infected
children are being isolated with the population, i.e., they have less importance on the network.

Case II. If the amount of viruses is “MEDIUM”, i.e., the triangular fuzzy number Am = (τc − δ, τc, τc + δ) satisfies
τc − δ ≥ τm and τc + δ < τ0, then the transmission rate σk(τ) is considered a linear function w.r.t. the malware load
τ . As a consequence, we also deduce that the basic reproduction number R0 := R0(τ), given by

R0(τ) =
Λσ⟨k2⟩

µ(r + µ)⟨k⟩
τ − τm
τ0 − τm

,

is an increasing function w.r.t. the viral load τ . It leads to a fact that the higher viral load is, the bigger value the
basic reproduction number R0 gets.

Case III. If the amount of viruses is “HIGH”, i.e., the triangular fuzzy number Ah = (τc − δ, τc, τc + δ) satisfies
τc − δ ≤ τ0, then the transmission rate σk(τ) = σk is a constant function w.r.t the viral load τ . Therefore, the basic
reproduction number R0 only depends on the model’s parameters.

5.2 The sensitivity analysis of the threshold value R0

Now, we will discuss how different parameters contribute to the change of the threshold value R0 by evaluating the
normalized sensitivity indices. According to Nakul et. al. [26], the sensitivity index of a quantity x depending on a

parameter λ can be determined by Υx
λ =

∂x

∂λ
× λ

x
. By the definition of the basic reproduction number R0, this quantity

depends on some model’s parameters such as r, σ(τ), µ,Λ and the parameter of network structure ⟨k2⟩
⟨k⟩ . Therefore, by

direct computations, we obtain

ΥR0

σ(τ) = 1, ΥR0

Λ = 1, ΥR0
r = − r

µ+ r
, ΥR0

µ = − (2µ+ r)

µ+ r
, ΥR0

⟨k2⟩
⟨k⟩

= 1.

Remark 5.1. We can see that the threshold value R0 is the most sensitive with the natural death rate µ. Furthermore,
we can conclude that the increase of the cure rate r will reduce the value of R0. In addition, the nodes with different
degrees will get different influences to the value R0. For the fuzzy transmission rate σ(τ), it will experience a 10%
increase of the value R0 if we increase the parameter σ by a same percentage. Similarly, we can also conclude that the

value of the basic reproduction number R0 increases with the increase of the structure parameter ⟨k2⟩
⟨k⟩ , which means that

the HFMD could be controlled if the value ⟨k2⟩
⟨k⟩ is decreasing, whereas the higher value of ⟨k2⟩

⟨k⟩ could follow that more

efforts must be done to eliminate the disease on the population, i.e. the controlling of the HFMD becomes more difficult

if the parameter ⟨k2⟩
⟨k⟩ is increasing. The results of sensitive test can be summarized in Table 3.

Table 3: The sensitivity indices of model’s parameters

No Parameter Description
Sensitivity

index

1 σ(τ) The fuzzy transmission rate +1

2 r The cure rate − 16
17

3 µ The natural death rate − 18
17

4 Λ The natural birth rate +1

5 ⟨k2⟩
⟨k⟩ The parameter of network structure +1

In addition, for convenience, we present the sensitivity of parameters in Figure 3.
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Figure 3: The sensitivity indices of the model’s parameters

In the following, we discuss the change of the basic reproductive number R0 with respect to viral load τ . Let us
choose the normalized values of threshold quantities τm, τ0, τM by 0.25, 0.65, 1, respectively. Then, the transmission rate
σ can be represented as a trapezoidal fuzzy number σ̃ = σ(0.25, 0.65, 1, 1). In order to dealt with the uncertainty in the
network-based epidemic model (1), we will apply the granular approach for fuzzy numbers proposed by Mazandarani
et al. [24] to represent the fuzzy transmission rate σ̃. The granular approach is developed from the idea of horizontal
membership function of Piegat [30]. In this approach, we parametrize a fuzzy number u by using two indices α (level-sets
index) and αu (relative-distance-measure variable, see [24] for more detail) that measures the granule of information.
In particular, for a fuzzy number u with respective level-sets [u]

α
= [u−

α , u
+
α ], α ∈ [0, 1], the granular representation of

the fuzzy number u is given by

ugr(α, αu) = u−
α +

[
u+
α − u−

α

]
αu,

in which αu ∈ [0, 1]. As a consequence, the horizontal membership function (or gr-representation) of the trapezoidal
fuzzy number σ̃ is given by σ̃gr(α, ασ) = σ [0.25 + 0.4α+ (0.75− 0.4α)ασ] . Then, the relative change of the basic
reproduction number R0 is given in Figure 4.

Figure 4: The relative change of the basic reproduction number R0 w.r.t. malware load: Fig. (a) σ = 0.1 and Fig. (b)
σ = 0.15

Figure 4 (b) shows the importance of viral load in the change of R0. If the amount of infectious source is increasing
then the basic reproduction number R0 also increases from less than 1 to greater than 1. Hence, there has a noticeable
change in the stability state of the proposed epidemic model when the viral load varies. Additionally, it experienced
that the bifurcation occurs at some values τ . This phenomena will be studied in our next work. A similar result was
discussed in [27].
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6 Conclusions

This work studied a fractional network-based SIRS epidemic model with fuzzy transmission and saturated treatment
function to discuss the malware attacking on the heterogeneous network. In reality, there may occur a scenario that the
quantity of infected individuals who need to be treated may exceed the treatment capacity and reach a saturation level.
Here, in order to better description for real-world situation, we introduce an epidemic model with a saturated treatment
function instead of a linear treatment function. In addition, this work also use linguistic variables and fuzzy membership
function to discuss the influence of malware load in the malware infection on the heterogeneous network. Based on
the next-generation matrix, we analytically evaluate the basic reproduction number R0, that is an important threshold
value to investigate the asymptotic stability of malware-free equilibrium and the presence of endemic equilibrium on the
network. We hope that this work will be the first stage to open up some further studies on the network-based epidemic
model. In the next study, we are going to consider the optimal quarantine control problem for the network-based
epidemic model (1) to evaluate the effect of quarantine treatment for controlling the epidemic disease. In addition, the
bifurcation phenomena leading from a malware-free equilibrium to an endemic equilibrium is an important problem
in the epidemiology theory. Since the proposed epidemic model considered the treatment function in nonlinear form,
namely saturated treatment function, the basic reproduction number cannot describe the necessary disease elimination
effort any more, i.e., a stable endemic equilibrium may co-exists with a stable malware-free equilibrium even if R0 < 1,
which means that the backward bifurcation phenomena occurs. This is also an interesting topic we are going to discuss
in the next study. On the other hand, the dynamic analysis for the endemic equilibrium E∗ hasn’t been detailed
discussed on this paper.

7 Appendix

In the following, we briefly recall a framework of fractional calculus, see [3, 15] for more details.

Definition 7.1. [3] For each β > 0 and [a, b] ⊂ R, let a function f : [a, b] → R such that f ∈ L1([a, b],R). Then, the
Riemann-Liouville fractional integral operator of order β is defined by

aI
β
t f(t) =

1

Γ(β)

∫ t

a

(t− s)β−1f(s)ds, t ∈ [a, b].

Definition 7.2. [3] Let m := ⌈β⌉ be the smallest integer greater than or equal to β. The Caputo fractional derivative
of order β of a function f ∈ Cm(a, b) is defined by

C
a D

β
t f(t) =

1

Γ(m− β)

∫ t

a

(t− s)m−β−1f (m)(s)ds.

In general, Caputo fractional derivative for a vector-valued function f = (f1, f2, . . . , fn)
⊤

is defined component-wise by

C
a D

β
t f(t) =

(
C
a D

β
t f1(t),

C
a D

β
t f2(t), . . . ,

C
a D

β
t fn(t)

)
.

Consider the initial value problem for the following fractional differential equations (FDS)

C
0 D

β
t x(t) = Ax(t) + f(x(t)) t > 0, (10)

subject to the initial conditions

x(0) = x0, (11)

where A ∈ Matn×n(R) and f : Rn → Rn is a continuously differentiable function and satisfies Lipschitz condition.
According to Corollary 6.9 in [3], it implies the global unique existence of solutions of the initial value problem (10)-
(11). Next, let φ : [0,∞) → Rn be a solution of the initial value problem (10)(11). Now, we recall from Definition 7.2
in [3] the notions of stability and asymptotic stability of trivial solution of (10).

Definition 7.3. [3] The trivial solution x∗ ≡ 0 of the FDS (10) is said to be

• stable if for all ε > 0, there exists δ = δ(ε) > 0 such that the solution φ(t,x0) of the initial value problem (10)(11)
satisfies ∥φ(t,x0)∥ < ε for all t ≥ 0 whenever ∥x0∥ < δ.
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• asymptotically stable if it is stable and attractive, i.e., there is a constant γ > 0 such that lim
t→∞

∥φ(t,x0)∥ = 0

whenever ∥x0∥ < γ.

Remark 7.4. The trivial solution x∗ ≡ 0 of the FDS (10) is said to be globally asymptotically stable if its stability does
not depend on the initial condition x0 ∈ Rn.

Lemma 7.5. [3] For each β1, β2 > 0, we have Eα1,α2(x) = xEα1,α1+α2(x)−
1

Γ(α2)
, where Eα1,α2(z) is the Mittag-Leffer

functions of two parameters α1 and α2 (see [15]).

Lemma 7.6. [17] Let x : [0,∞) → R+ be an absolutely continuous function on [0,∞) and β ∈ (0, 1]. Then, for each
x∗ ∈ R+ and t > 0, the following inequality holds

C
0 D

β
t

(
x(t)− x∗ − x∗ ln(

x(t)

x∗ )

)
≤
(
1− x∗

x(t)

)
C
0 D

β
t x(t).

Remark 7.7. Let Ψ : [0,∞) → R be a function given by Ψ(x) = x−x∗ −x∗ ln
(

x
x∗

)
. Then, it is true that the function

Ψ(x) is a non-negative function and attains the global minimum at the point x = x∗.

Lemma 7.8. [28] Assume that β ∈ (0, 1] and both the function Φ and its fractional derivative C
0 D

β
t Φ belong to the

space C[a, b]. Then we have Φ(t) = Φ(a) +
1

Γ(β)
C
a D

β
t Φ(ξ) (t− a)

β
, for a ≤ ξ ≤ t and t ∈ [a, b].
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Abstract

This paper deals with the problems of studying the dynamical behavior of a controlled fractional network-based
SIRS epidemic model and establishing an immunization policy based on interconnected fractional Takagi-Sugeno
fuzzy systems. Firstly, we introduce a three-compartmental network-based epidemic model with saturated treat-
ment function and fractional-order derivative. Next, we discuss some qualitative properties of the proposed
network-based SIRS epidemic model such as the existence of positively invariant set, the backward bifurcation
and the asymptotic behavior of solution. Especially, in order to study the asymptotic stability, we establish an
epidemiological threshold value R0, namely basic reproductive ratio, which ensures not only the existence of at
least one endemic equilibrium P∗ but also the local asymptotic stability of a malware-free equilibrium P0. As a
consequence of theoretical result, the malware-free equilibrium P0 is unstable when R0 > 1 and hence, the rest
of this paper is to address a stabilization problem for the proposed controlled fractional network-based epidemic
model and present a novel stabilization criterion with parallel distributed compensation (PDC) controller related
to linear matrix inequalities and positive definite matrices. Finally, we illustrate the obtained theoretical results
by a computational example.

Keywords: A controlled fractional network-based SIRS epidemic model; Equilibrium points; Nonlinear treatment
function; Asymptotic stability; Backward bifurcation; Fractional interconnected Takagi-Sugeno fuzzy system;
Fuzzy state-feedback control.

2010 MSC: 05C82, 34A08, 93C42, 93D15, 93D20.

1. Introduction

It is a fact that, in the age of information technology, many real-life problems, such as electric power systems,
nuclear reactors, aerospace systems, economic systems, and process control systems, etc., have become increasingly
large in scope and complex in structure, that is the reason why the two past decades have witnessed a dramatic
growth of research development on complex heterogeneous network. Now, it is still a promising research area
and numerous significant results have continued to appear one after another in variety disciplines of sciences,
engineering and real-world processes such as intelligent transportation systems, smart power grids, water and
energy distribution, mobile robots, industrial processes, sensor network and computer networks, see, see [1, 5, 11,
18, 22, 29, 38, 41]. The structure of each complex heterogeneous network consists of a certain number of nodes
connected by links or edges for data transmission, information gathering, processing and implementation. Nodes in
network systems can exchange information through wired and wireless communication channels. Unfortunately, if
some malicious objects such as viruses, worms or etc. are attached in transmitted data then these malicious objects
may take advantage of data transmission process to be widespread on the network, attack and threaten the safety
of network systems. For example, some computer viruses are capable of acquiring personal data from network users
such as account passwords, causing serious damage to individuals and corporations. As a consequence, in order to
against with this threat of contemporary information society, a lot of treatments have been done such as regularly
upgrading the system, promoting monitoring, strengthening security layers,. . . in which the development of anti-
malware software is an important way to safeguard the information systems. However, no matter how good the
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measure, there are always its advantages and disadvantages. The problem comes from the fact that no anti-malware
program can detect and clear all kinds of malicious objects. Moreover, accompanied by the dramatic development
of various network systems, there are more and more types of malicious objects appearing and they seem to be more
dangerous and harder to be detected. We must admit that when a new type of malware appears, it takes a while to
have a software to handle this malware, i.e., there often has an inevitable lag from the appearance of a new malware
to the introduction of anti-malware program targeting this malicious object. The danger here is that during this
lag, malicious objects can widely spread in the network that results extreme influences to the safety, security and
smooth operation of network systems. In the study and development of anti-malware programs, the first task is
to accurately analyze the dynamic properties of malware programs as well as their infection mechanism and then,
predict their evolutionary directions. For this aim, many scientists have contributed their work to mathematical
modeling the malware program’s infection on network systems based on differential or statistical models. This
approach seems to be realistic because the rates of disease-causing contacts and the interactions among nodes on
network systems are un-similar. And hence, the concept of a complex heterogeneous network is incorporated into
epidemic models to describe the effect of contact heterogeneity of the network’s nodes in a malware program’s
attack. In this work, our aim is to investigate the mechanism of malware propagation on complex heterogeneous
network based on the use of mean-field reaction-rate differential equations. These systems are often known as
network-based epidemic models and the last decade have experienced a noticeable development on the qualitative
studies of malware propagation on complex heterogeneous networks governed by network-based epidemic models,
see [5, 11, 12, 15, 17, 27] for therein.

Nowadays, fractional calculus and dynamical systems governed by fractional differential equations and fractional
partial differential equations have attracted more and more attention by many researchers due to their great
applications in various areas of science and engineering such as mechanics and control processes [39, 40], information
networks [10, 11, 17], epidemiology [9, 16], economics [13, 44], viscoelastic materials [4, 32, 37], mathematical
modeling [6, 25, 26, 28, 31] and etc. These studies have proved that fractional derivative has many advantages
in comparison with integer-order derivative. In addition, one of the most simple examples, where the fractional
calculus shows its importance, can be observed in the diffusion processes. It is proved that the diffusion process
is obtained when the order of fractional derivative is in (0, 1). Another impact of fractional derivative can be
found in the stability analysis. Indeed, there exist differential equations that are not stable with integer-order
derivative, but their fractional versions are stable with fractional derivatives (see [8]). Although the studies of both
fractional dynamic systems and network-based epidemic models have an interesting significance and have gained a
lot of achievements, there only exists a few works studied the network-based epidemic models with fractional-order
derivative. Some of them can be found in [11, 12, 14, 17, 21, 33]. The study of stability and stabilization problem
for various types of differential systems is an important branch of applications-oriented mathematics. Here, theory
of stability, that has done so for well over 130 years since the 1892 work of A.M. Lyapunov, provides core techniques
and effective tools for the analysis of dynamical behaviors of many mathematical model-based processes. If we
regard the stability theory plays a key role in the study of dynamical control systems and their applications then
the feedback stabilization problem is a core problem of mathematical control theory. Probably the first modern
stabilization problem was done in an earlier study of J. Clerk Maxwell for the feedback control problem of a steam
engine governor. Along with the popularization of fractional differential equations and fractional partial equations
in modeling real-world processes, many qualitative problems related to fractional dynamical systems have been
attracted by mathematicians and scientists, in which the stability theory and control problems are two of specified
problems. Some recent works, that extensively study on these topics, can be found in [4, 6, 13, 25, 26, 34, 37, 39, 40].
However, it should be noted that the existing results are limited on linear models and the studies of fractional
nonlinear differential systems, especially fractional network-based models, are in the first stage of the research and
have just gained some initial theoretical results. For example, see [14, 16, 17, 21]. Indeed, due to the structural
characteristics, such as high dimension, nonlinear, uncertain interconnections or induced delays [41], the stability
analysis of networked-based models can be very challenging. It is well-known that networked-based models consist
of several connected subsystems by linear or nonlinear couplings. In this context, the problem of handling nonlinear
interconnections can be considered as one of the great challenges in both the feedback stabilization problem and
design of controllers for networked-based models, since usually only linear interconnections are considered in some
current works, see [5, 14, 19, 30, 48].

Takagi–Sugeno (TS) fuzzy models have been recognized as an effective way to represent nonlinear systems with
an arbitrary precision by means of convex combination of local models, which in general are linear time-invariant
differential equations [42]. By exploiting the convex structure of TS models, stability analysis and control design
conditions can be formulated as convex optimization problems under linear matrix inequality (LMI) constraints
[45]. It is well known that exact TS fuzzy models can be obtained to represent nonlinear systems by employing
the sector non-linearity approach [43]. As a consequence, the number of local models (or fuzzy rules) exponentially
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grows with the amount of system nonlinearities related to the number of premise variables. In three past decades,
it experienced a dramatic development of the studies on stability analysis and stabilization based on TS fuzzy
models. The TS fuzzy model takes a lot of advantages of human knowledge and experience to handle real-world
systems with fewer fuzzy rules than other types of fuzzy systems. Hence, it is natural idea to apply TS fuzzy model
to deal with fractional-order models [28, 31] or network-based systems [1, 30].

Next, in order to highlight the novelty of this work, we present some comparisons with some other related
works, in which we use some following abbreviations: Epidemic model (EM), Takagi-Sugeno fuzzy system (T-S),
Fractional-order dynamic model (FO) and Network-based model (NS).

Table 1: THE COMPARISON OF THE PROPOSED MODEL WITH SOME RELATED WORKS

No Authors/Year EM T-S FO NS Keywords

1
Zhang et al.

(2004), see [50]
x

Cost-guaranteed optimal control problem; Nonlinear
time-delay dynamical system; Parallel distributed
compensation (PDC) controller; Linear matrix
inequality; Takagi-Sugeno fuzzy model

2
Lin et al.

(2007), see [30]
x x

Large-scale Takagi-Sugeno fuzzy systems; Parallel
distributed compensation fuzzy controller; Linear
matrix inequalities

3
Li et al. (2014),

see [28]
x x

Fractional order uncertain TS fuzzy model; Robust
stability; PDC state feedback control; Fractional
order Rössler system; Fractional order uncertain
Lorenz system

4

A. Benzaouia
and A.E.

Hajjaji (2017),
see [2]

x x
Continuous-time fractional positive systems;
Takagi-Sugeno fuzzy model; Stabilization; Linear
programming; State feedback controller

5
Lu et al.

(2020), see [33]
x x x

Inter-city networked coupling effects;
Fractional-order; SEIHDR epidemic model;

6
Araújo et al.
(2021), see [1]

x x
Distributed saturation control; Network nonlinear
systems; Interconnected Takagi-Sugeno fuzzy model

7
H.J. Lee (2022),

see [23]
x x

SIR epidemic model; Positive Takagi-Sugeno fuzzy
model; Static output-feedback control; L∞ − L∞
disturbance attenuation

8
Dong et al.

(2022), see [11]
x x x

Energy-Aware Barabási Albert scale-free network
model; Fractional SE1E2IQR epidemic model;
Equilibria; Globally asymptotic stability; Backward
bifurcation

9
Dong et al.

(2022), see [12]
x x x

Fractional network-based epidemic model; Fuzzy
transmission saturated treatment function;
Equilibria; Basic reproduction number; Asymptotic
stability

10
The proposed

work
x x x x

Fractional network-based SIRS epidemic model with
control; Equilibria; Nonlinear treatment function;
Asymptotic stability; Backward bifurcation;
Interconnected Takagi-Sugeno fuzzy system; Fuzzy
PDC state-feedback control.

To the best of our knowledge, there isn’t any work studied on the Takagi-Sugeno fuzzy system for fractional
network-based epidemic model, which deals with both the complex heterogeneity of network system modeled
the attack of malware programs on real-world networks and the non-local properties induced from the fractional
differential model. It is well-known from Table 1 that with the outbreak of epidemiological studies on network
systems in some recent years, it is natural to carry out a detailed research on control problems for fractional
network-based epidemic models under Takagi-Sugeno fuzzy systems approach. Motivated by aforesaid, this work
is devoted to study a fractional epidemiological model on complex with immunization, namely controlled fractional
network-based SIRS epidemic model, and present some qualitative properties of the proposed epidemic model. For
more clearly, we highlight the main contributions of this work as follows:
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(i) Study a controlled fractional network-based SIRS epidemic model with saturated treatment function to
describe the dynamical behavior of malware program’s attack on complex heterogeneous network under
immunization control. Here, based on the theory of fractional differential equations and theory of complex
network, we propose to study a large-scale differential systems including n fractional mean-field reaction rate
equation of the form (4). Furthermore, in order to provide a better description for the scenario that epidemic
disease due to malware programs blows up, we consider a nonlinear treatment function instead of linear one.

(ii) Based on the mathematical formulation (4) of the kth subsystem of the controlled fractional network-based
SIRS epidemic model, we analyze the dynamical behaviors of the proposed epidemic model and summarize
some important characteristic properties such as positivity, the existence of positively invariant set and
asymptotic stability. Especially, a noticeable achievement of this work is the use of next-generation matrix
method (see [7]) to evaluate the basic reproductive ratio R0, that is regarded as an important threshold value
in the epidemiological theory. Furthermore, in order to study the effect of model’s parameters to R0, we
present some evaluations of the normalized sensitivity indices of parameters.

(iii) It is well-known that the existence and dynamical behavior of the epidemic model’s equilibrium points are
cores of the epidemiological study. In this work, we show that the malware-free equilibrium P0 of the
controlled fractional network-based SIRS epidemic model always exists for all input control u. Especially,
in the case u = 0, we receive a well-known malware-free equilibrium introduced in [12]. Next, Theorem 4.1
points out that the existence of endemic equilibrium P∗ strongly depends on the basic reproductive R0, but
this existence may be not unique.

(iv) A detailed discussion on the asymptotic stability of the malware-free equilibrium P0 is presented in Theorem
4.2 and Theorem 4.3. While we only adjust the basic reproductive ratio R0 less than unity to ensure the
local asymptotic stability of the malware-free equilibrium P0, the global asymptotic stability of P0 requires
a larger threshold value R̃0 > R0 and this value must be less than unity. In this section, in order to explain
the phenomena that there may have an endemic equilibrium co-existing with P0 even R0 < 1, we discuss the
condition of backward bifurcation of the proposed model.

(v) It is an interesting question that how to control the dynamical behavior of the controlled fractional network-
based SIRS epidemic model or in an other word, how to stabilize the unstable malware-free equilibrium P0 of
the proposed model, which arising from the fields of network models and physiological systems with memory
effect. For this aim, we apply the interconnected Takagi-Sugeno fuzzy system approach to establish some
sufficient conditions in the linear matrix inequality (LMIs) form for the stabilization of the equilibrium P0.
To the best of our knowledge, there isn’t any work done with Takagi-Sugeno fuzzy system for network-based
differential systems with fractional order derivative.

Finally, the structure of this paper is given as follows:

2. Preliminaries

In this section, we briefly recall from [8, 20, 47] some notions and auxiliary results on fractional dynamical
systems and their stability theory, Takagi-Sugeno fuzzy system for network models. First of all, we summarize
some notations and basic concepts that will be used throughout this paper.

2.1. Notations

� Rn
+ denotes for the non-negative orthant of the n−dimensional real space Rn;

� In is the identity matrix of order n and 0 is the zero matrix with appropriate dimensions;

� A = [aij ]m×n denotes for a real matrix with m rows and n columns and A⊤ denotes for its transpose;

� A matrix A = [aij ]n×n is called positive definite if x⊤Ax > 0 for all x ∈ Rn \ {0};

�
C
0 Dβ

t x(t) denotes for the Caputo fractional derivative of order β of a function x(t);

� Eβ1,β2
(x) denotes for the Mittag-Leffer functions of two parameters β1 and β2;

� arg(λ) and |arg(λ)| denote for the argument of a complex number λ and its corresponding modulus.
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2.2. Fractional calculus
Definition 2.1 ([8]). Let m := ⌈β⌉. Then, the Caputo fractional derivative of order β of a function f ∈ Cm(0, T )
is defined by

C
0 Dβ

t f(t) =
1

Γ(m− β)

∫ t

0

(t− s)m−β−1f (m)(s)ds.

In particular, if f(t) is a continuously differentiable function on [0, T ] then

C
0 Dβ

t f(t) =
1

Γ(1− β)

∫ t

0

(t− s)−βf ′(s)ds.

Especially, if f = (f1, f2, . . . , fn)
⊤
is a vector-valued function then the Caputo fractional derivative of f(t) is defined

component-wise by C
0 Dβ

t f(t) =
(
C
0 Dβ

t f1(t),
C
0 Dβ

t f2(t), . . . ,
C
0 Dβ

t fn(t)
)⊤

.

Proposition 2.1 ([8]). For each β1, β2 > 0, we have Eβ1,β2
(x) = xEβ1,β1+β2

(x) − 1

Γ(β2)
, where Eβ1,β2

(x) is the

Mittag-Leffer functions of two parameters β1 and β2 (see [20] for more details).

Lemma 2.1 ([36]). Assume that β ∈ (0, 1] and both the function Φ and its fractional derivative C
0 Dβ

t Φ belong to
the space C[a, b]. Then we have

Φ(t) = Φ(a) +
1

Γ(β)
C
a Dβ

t Φ(ξ) (t− a)
β
,

for a ≤ ξ ≤ t and t ∈ [a, b].

Consider an initial value problem (IVP) for the following fractional differential equations (FDS)

C
0 Dβ

t x(t) = Ax(t) + f(x(t)), t > 0 (1)

subject to the initial condition x(0) = x0, where A ∈ Matn×n(R) and f : Rn → Rn is a continuously differentiable
function. Let φ : [0,∞) → Rn be a solution of the problem (IVP) and recall from Definition 7.2 in [8] the concepts
of stability of trivial solution to the FDS (1).

Definition 2.2 ([8]). The trivial solution x ≡ 0 of the FDS (1) is said to be

� stable if for all ε > 0, there exists δ = δ(ε) > 0 such that the solution φ(t,x0) of (IVP) satisfies ∥φ(t,x0)∥ < ε
for all t ≥ 0 whenever ∥x0∥ < δ.

� asymptotically stable if it is stable and attractive, i.e., there exists a γ > 0 such that lim
t→∞

∥φ(t,x0)∥ = 0

whenever ∥x0∥ < γ.

In the case f (x(t)) ≡ 0, the stability of the obtained linear fractional differential system is equivalent to the
stability of the trivial solution x ≡ 0. Next, we present a necessary and sufficient criteria for the stability of linear
fractional differential system

Theorem 2.1 ([8]). The linear fractional differential systems C
0 Dβ

t x(t) = Ax(t) is

� asymptotically stable if and only if |arg (λi)| >
βπ

2
holds for all eigenvalues λi of the matrix A.

� stable if |arg (λi)| ≥
βπ

2
holds for all eigenvalues λi of the matrix A and all critical eigenvalues, which satisfy

the condition |arg (λi)| =
βπ

2
, have geometric multiplicity one.

Definition 2.3 ([26]). A continuous function γ : [0, t) → [0,∞) is said to belong to K −class if this function is
strictly increasing and γ(0) = 0.

Next, we recall from [26] an extension of Lyapunov direct method for fractional dynamic systems

Theorem 2.2 ([26]). Let x ≡ 0 be an equilibrium point of the fractional differential system (1). Assume that there
exist a Lyapunov function V (t,x(t)) and some K −class functions γi(·) (i = 1, 2, 3) such that

γ1(∥x(t)∥) ≤ V (t,x(t)) ≤ γ2(∥x(t)∥)
C
0 Dβ

t V (t,x(t)) ≤ −γ3(∥x(t)∥).

Then, the equilibrium point x ≡ 0 of the fractional differential system (1) is asymptotically stable.
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2.3. The interconnected fractionalTakagi-Sugeno fuzzy systems

It is well-known that the qualitative knowledge of many real-world systems can be represented by nonlinear
dynamic systems and the Takagi-Sugeno (T-S) fuzzy model is regarded as a very good representation for some
certain classes of nonlinear dynamic systems, see [42]. In this work, we consider a continuous-time network-based
nonlinear dynamic system which consists of N interconnected fractional nonlinear subsystems with observer:

C
0 Dβ

t xi(t) = H (xi(t),ui(t)) +

N∑
j=1

Hij (xi(t),xj(t))

yi(t) = H (xi(t)) ,

for all i = 1, 2, . . . , N , where H, H and Hij are smooth nonlinear functions. Assume that by using linearization
method or sector nonlinearity method (see [24]), we obtain a large-scale fractional Takagi-Sugeno fuzzy system E
composed of N interconnected subsystems Ei, and each subsystem Ei is represented by the following fractional
Takagi-Sugeno fuzzy system

“The rule Ep
i : If zi1(t) is F

p
i1 and zi2(t) is F

p
i2 and . . . and ziq(t) is F

p
iq then

C
0 Dβ

t xi(t) = Ap
ixi(t) +Bp

i ui(t) +

N∑
j=1

αp
ijxj(t)

yi(t) = Dp
i xi(t), ”

for all p = 1, 2, . . . , ri, where Ep
i is denoted for the pth rule of the interconnected subsystem Ei and other terms

can be explained as follows:

� Ap
i , B

p
i and Dp

i are constant matrices with appropriate dimensions.

� xi(t) ∈ Rni and ui(t) ∈ Rmi are the state vector and the input vector of the subsystem Ei, respectively.

� The vector zi(t) =
[
zi1(t) zi2(t) · · · ziq(t)

]⊤
is a measurable premise variable for the subsystem Ei, which

may be equal to xi(t) or a function of xi(t).

� The index ri is the number of fuzzy rules in the subsystem Ei.

� For each j = 1, 2, . . . , q, F p
ij are antecedent fuzzy sets of the rule p and F p

ij (zij(t)) is the grade of membership
function of zij(t) in F p

ij .

� The matrix αp
ij is the interconnected matrix between the subsystem Ei and Ej in the rule p.

After that, by applying the standard fuzzy inference method, the subsystem Ei is equivalent to
C
0 Dβ

t xi(t) =

ri∑
p=1

wp
i (zi(t))

Ap
ixi(t) +Bp

i ui(t) +

N∑
j=1

αp
ijxj(t)


yi(t) =

ri∑
p=1

wp
i (zi(t))D

p
i xi(t),

(2)

where

wp
i (zi(t)) =

φp
i (zi(t))

ri∑
p=1

φp
i (zi(t))

, φp
i (zi(t)) =

q∏
j=1

F p
ij (zij(t)) . (3)

Note that φp
i (zi(t)) ≥ 0 for each p = 1, 2, . . . , ri and wp

i (zi(t)) satisfying

ri∑
p=1

wp
i (zi(t)) = 1 can be regarded as the

normalized weights of the IF-THEN rules for all i = 1, 2, . . . , N (see [30] for more details).
Next, we recall a necessary lemma that are used for studying the asymptotic stability of interconnected

fractionalTakagi-Sugeno fuzzy system:

Lemma 2.2 ([34], Lemma 4). Let x(t) ∈ Rn be a continuously differentiable function and P ∈ Matn×n(R) be a
symmetric positive definite matrix. Then, for each β ∈ (0, 1] and t ≥ 0, the following inequality holds

1

2
C
0 Dβ

t

(
x⊤(t)Px(t)

)
≤ x⊤(t)PC

0 Dβ
t x(t).
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3. Model Formulation

In this work, we propose to use a three-compartment epidemic model, namely fractional network-based SIRS
epidemic model, to study the effect of malware propagation on complex heterogeneous network. The SIRS epidemic
model categorizes the whole populations of node into three compartments, which are briefly explained in Figure 1.

Figure 1: The description of a three-compartment epidemic model: Susceptible (S) - Infectious (I) - Recovered (R)

It is known that the traditional epidemic models often consider an over-simplified assumption that all individuals
are uniformly mixed and the importance of each node in the malware spreading is similar, that is, each individual
has the same probability of contact with an infected one. This makes considered models tractable but not realistic,
especially, for epidemic diseases in large populations such as social network or information network. Hence, in
the modeling of many real-world epidemic models, it is obviously necessary to take into consideration the effect of
contact heterogeneity or node’s degree when evaluating the rate of epidemic-causing contacts. Motivated by the
work of Pastor-Satorras et al. [38], we classify the total population of nodes into n groups and in the kth-group,
we denote by Sk(t), Ik(t) and Rk(t) the densities of susceptible, infectious and recovered nodes of degree k at time
t, respectively. In addition, we assume that Nk(t) = Sk(t) + Ik(t) +Rk(t) is the number of nodes with degree k at
the time t. The flowchart of malware propagation on the kth-group is given in Figure 2.

Figure 2: The transfer diagram of malware propagation among three compartments: Susceptible (S), Infectious (I) and Recovered (R)
on the kth-group

The state transition diagram in Figure 2 illustrates how nodes are shifted from one state to another state during
the malware propagation process. In particular, the state change between these three states is governed by the
following rules:

� Each node may die at a rate of µ when it depletes its battery power and a new node can join the network
at a rate of Λ. The network’s recruitment rate Λ into Susceptible state and the network’s discard rate µ
are assumed to be equal to ensure the balance and continuity of the network, that is, a closed system where
nodes eliminated from the system are actively replaced by full-energy new nodes.
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� When a susceptible node of degree k gets exposed to malware programs, it transits to Infectious state with
a rate σkΦ(t), where the parameter σk is the transmission rate when susceptible nodes contact with the
infection. In addition, under the protection of firewall and anti-virus programs, a susceptible node can
be shifted to the state (R) at a time-dependent adjustable rate uk(t) and then, we say that this node is
immunized. In this work, we regard the immunization as a control strategy.

� In classical epidemic models, the treatment rate of infectious node is assumed to be proportional to the number
of this nodes, that is, the treatment function is linear. However, it is a fact that for epidemic models on
complex heterogeneous network, anti-virus programs have just a certain maximal capacity for the treatment
of a malware infection. Motivated by the work of Li et al. [27], we use the treatment function of the form

φ(Ik) =
rIk

1 + γΦ
,

for the treatment of the kth-group, in which r is the cure rate and the parameter γ is used to measure
the extent of the effect of infected nodes being delayed for treatment. This treatment function seems more
realistic than the linear ones.

� Nodes in the state (R) log out the network with a rate µ due to running out of battery power. On the other
hand, because the immunization of anti-virus programs is just temporary, recovered nodes can lose immunity
and become susceptible again at a rate of ω.

In perspective of the superiority of non-integer order derivative and in order to describe the complete memory
effect of malware spreading processes on complex heterogeneous network, we apply the fractional calculus tool to
study a network-based malware spreading model with fractional-order derivative. In particular, we characterize the
mechanism of malware propagation on complex heterogeneous network in the kth-group by the following fractional
mean-field reaction rate equation:

C
0 Dβ

t Sk(t) = Λ− σkΦ(t)Sk(t)− (µ+ uk(t))Sk(t) + ωRk(t)

C
0 Dβ

t Ik(t) = σkΦ(t)Sk(t)− µIk(t)−
rIk(t)

1 + γΦ(t)

C
0 Dβ

t Rk(t) = uk(t)Sk(t) +
rIk(t)

1 + γΦ(t)
− (µ+ ω)Rk(t),

(4)

subject to the initial conditions

Sk(0) = S0
k > 0, Ik(0) = I0k ≥ 0, Rk(0) = R0

k ≥ 0. (5)

where C
0 Dβ

t (·) is the Caputo fractional derivative of order β ∈ (0, 1] of the state functions, the transmission rate σk

satisfies σk = kσ and all other model’s parameters are assumed to be positive. The function Φ(t) is the probability
that a given link is connected to an infectious node and according to Huang et al. [15], this function is given by
the following expression

Φ(t) =
1

⟨k⟩

n∑
k=1

φ(k)P(k)Ik(t),

where P(k) is the probability that a randomly chosen node has degree k, φ(k) = k is the spreading ability of a

node with degree k and ⟨k⟩ =
n∑

k=1

kP(k) denotes for the mean degree of the network.
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4. The analysis of fractional network-based SIRS epidemic model

4.1. The positively invariant set

For simplicity in representation, we denote

x̃k(t) =
[
Sk(t) Ik(t) Rk(t)

]⊤
x̃(t) =

[
x̃1(t) x̃2(t) · · · x̃n(t)

]⊤
=
[
S1(t) I1(t) R1(t) · · · Sn(t) In(t) Rn(t)

]⊤
Σ+ =

{
x̃(t) ∈ R3n

+ : Sk(t) + Ik(t) +Rk(t) = 1, k = 1, n, t ≥ 0
}

Fk(t, x̃(t),u(t)) =


Λ− σkΦ(t)Sk(t)− (µ+ uk(t))Sk(t) + ωRk(t)

σkΦ(t)Sk(t)− µIk(t)−
rIk(t)

1 + γΦ(t)

uk(t)Sk(t) +
rIk(t)

1 + γΦ(t)
− (µ+ ω)Rk(t)

 (k = 1, n)

F(t, x̃(t),u(t)) =
[
F1(t, x̃(t),u(t)) F2(t, x̃(t),u(t)) · · · Fn(t, x̃(t),u(t))

]⊤
.

In addition, this work regards the input control uk(t) as the rate of susceptible individuals being immunized
per unit of time and define

Uad =
{
u(·) ∈

(
L1[0, T ]

)n
: 0 ≤ uk(t) ≤ b, k = 1, n

}
(0 < b < 1),

by the admissible control set consisting of Lebesgue measurable functions on the time interval [0, T ]. Here, due
to the fact that immunization of all entire susceptible individuals at one time is un-realistic, we assume that each
input control uk(t) is restricted by the condition 0 ≤ uk(t) ≤ b < 1.

Next, due to the presence of malware programs on complex heterogeneous network and by definition of the
probability function Φ(t), we assume that Φ(t) > 0 for each t ≥ 0. Thus, from the epidemiological viewpoint, we
only need to focus on the existence of positive solution and positively invariant set of the fractional network-based
SIRS epidemic model, which are given as follows:

Lemma 4.1. For each input control u ∈ Uad, Cauchy problem for the fractional network-based SIRS epidemic
model always has exactly one positive solution x̃(t). In addition, if the initial condition satisfies x̃(0) ∈ Σ+ then
for all t > 0, the solution x̃(t) belongs to Σ+.

Proof. Our proof is divided into following steps:
Step 1 (The existence and uniqueness): In order to prove the unique existence of the solution x̃(t), we will
show that the initial value problem (4) - (5) has a unique solution x̃k(t) for all t ≥ 0. For this aim, we rewrite the
fractional network-based dynamical system (4) as follows:

C
0 Dβ

t

Sk(t)

Ik(t)

Rk(t)

 =

−µ− uk(t) 0 ω

0 −µ 0

uk(t) 0 −(µ+ ω)


Sk(t)

Ik(t)

Rk(t)

+


Λ− σkΦ(t)Sk(t)

− rIk(t)
1+γΦ(t)

rIk(t)
1+γΦ(t)

 .

Since the input control uk(t) is a bounded function for each k = 1, n, we can see that the matrix

A(uk) =

−µ− uk(t) 0 ω

0 −µ 0

uk(t) 0 −(µ+ ω)


is a bounded matrix function for all t ≥ 0 and the norm ∥A(uk)∥ = max {µ+ 2b, µ, µ+ 2ω} = µ + 2max {b, ω}.
Additionally, we denote f(t, x̃(t)) = (f1(t, x̃(t)), f2(t, x̃(t)), . . . , fn(t, x̃(t)))

⊤
and for each k = 1, 2, . . . , n, we have

fk(t, x̃(t)) =

[
Λ− σkΦ(t)Sk(t) − rIk(t)

1 + γΦ(t)

rIk(t)

1 + γΦ(t)

]⊤
.
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Note that for each x̃(t) ∈ Σ+ and k = 1, 2, . . . , n, it yields

∥fk(t, x̃(t))∥ ≤ Λ + σk |Φ(t)| |Sk(t)|+
2r|Ik(t)|

|1 + γΦ(t)|
≤ Λ + σk |Sk(t)|+ 2r |Ik(t)|
≤ Λ +max {σk, 2r} ∥x̃(t)∥

and

∥f(t, x̃(t))∥ ≤ n

(
Λ +max

k
{σk, 2r} ∥x̃(t)∥

)
.

Let

af = max

{
nΛ, n

(
µ+ 2max {b, ω}+max

k
{σk, 2r}

)}
= n

(
µ+ 2max {b, ω}+max

k
{σk, 2r}

)
> 0.

Hence, for all x̃(t) ∈ Σ+, u ∈ Uad and t > 0, it is true that

∥F(t, x̃(t),u(t))∥ ≤ n

[
Λ +

(
µ+ 2max {b, ω}+max

k
{σk, 2r}

)
∥x̃(t)∥

]
≤ af (1 + ∥x̃(t)∥) .

On the other hand, for each x̃(t),x(t) ∈ Σ+ and t ≥ 0, we have

∥fk(t, x̃(t))− fk(t,x(t))∥ ≤ σk

∣∣Sk(t)Φ(t)− Sk(t)Φ(t)
∣∣+ 2r

∣∣∣∣ Ik(t)

1 + γΦ(t)
− Ik(t)

1 + γΦ(t)

∣∣∣∣
≤ σk

(
1 +

√
⟨k2⟩
⟨k⟩

)
∥x̃(t)− x(t)∥+ 2r

(
1 +

2γ
√
⟨k2⟩

⟨k⟩

)
∥x̃(t)− x(t)∥ .

Denote Lf = n (µ+ 2max {b, ω}) + max
k

[
σk

(
1 +

√
⟨k2⟩
⟨k⟩

)
+ 2r

(
1 +

2γ
√

⟨k2⟩
⟨k⟩

)]
> 0. Then, for each u ∈ Uad,

x̃(t),x(t) ∈ Σ+ and for all t > 0, we receive

∥F(t, x̃(t))− F(t,x(t))∥ ≤ Lf ∥x̃(t)− x(t)∥ ,

which means that the function F(t, x̃(t)) satisfies Lipschitz conditions w.r.t. the state variable x̃(t). Finally, by
applying Corollary 6.9 in [8], we can conclude that Cauchy problem for the fractional network-based SIRS epidemic
model always has exactly one positive solution x̃(t) defined for all t ≥ 0.
Step 2 (The positiveness of solution): For this proof, we assume by contrary that for each k = 1, n, there
exists a time t0 > 0 such that 

Sk(t0) = 0

Sk(t) > 0 for all 0 ≤ t < t0

Sk(t) < 0 for some t > t0.

Then, we consider two following cases:
Case 1: If the function Ik(t) is non-negative for all t ≥ 0 then we have

C
0 D

β
t Rk(t) = uk(t)Sk(t) +

rIk(t)

1 + γΘ(t)
− (ω + µ)Rk(t) ≥ −(ω + µ)Rk(t).

After that, by applying fractional comparison principle (Lemma 10, [25]), we receive

Rk(t) ≥ Rk(0)Eβ

(
−(ω + µ)tβ

)
≥ 0 for all t ∈ [0, t0].

Next, by substituting these above results to the first differential equation of the system (4), we have

C
0 D

β
t Sk(t)|t=t0= Λ+ ωRk(t0) > 0,
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which means that there is a sufficiently small constant ε0 > 0 such that
εβ0

Γ(β)
C
0 D

β
t Sk(t)|t=ξ≥ 0 for all t ∈ (t0, t0+ε0).

Finally, by using Lemma 2.1 for a = 0 and t = t0 + ε0, we receive

Sk(t0 + ε0) = Sk(0) +
εβ0

Γ(β)
C
0 D

β
t Sk(t)|t=ξ > 0,

which contradicts to our assumption.
Case 2: If there exists a time t1 > 0 such that

Ik(t) = 0 if t = t1

Ik(t) > 0 if t ∈ [0, t1)

Ik(t) < 0 for some t > t1.

Then our proof is proceeded in two following sub-cases:
Sub-case 1: If t1 ≥ t0 then by doing similar arguments as in Case 1, we can prove that the functions Ik(t), Rk(t)
are all non-negative on the interval [0, t0] and Sk(t0 + ε0) > 0, which leads to the contradiction.
Sub-case 2: If t1 < t0 then we have S(t1) > 0 and Θ(t1) > 0. Moreover, at the time t = t1, we have

C
0 D

β
t Ik(t)|t=t1= σk(τ)Sk(t1)Θ(t1) > 0.

Then, we can choose 0 < ε1 ≪ 1 such that C
0 D

β
t Sk(t)|t=ξ ≥ 0 with ξ ∈ [t1, t1 + ε1]. Next, by using Lemma 2.1 for

a = 0 and t = t1 + ε1, we obtain

Ik(t1 + ε1) = Ik(0) +
εβ1

Γ(β)
C
0 D

β
t Ik(t)|t=ξ > 0.

This leads to a contradiction with our assumption. Therefore, we can conclude that the function Sk(t) > 0 is
always positive for all t ≥ 0. As a consequence, by doing similar arguments, we can also prove that the functions
Ik(t) and Rk(t) are all non-negative for all t ≥ 0 and k = 1, n.
Step 3 (The positively invariant set): By summing up all fractional differential equations of the system (4),
we receive the following fractional differential equation

C
0 Dβ

t Nk(t) = Λ− µNk(t).

By applying the result of Example 4.9 in [20], we receive

Nk(t) = Nk(0)Eβ(−µtβ) + ΛtβEβ,β+1(−µtβ) = Nk(0)Eβ(−µtβ) +
Λ

µ

[
1− Eβ(−µtβ)

]
.

Here, we apply Theorem 4.2. in [8] with n1 = β, n2 = 1 and x = −µtβ . Then, by the assumption that x̃(0) ∈ Σ+,
we immediately obtain

Nk(t) =
Λ

µ
Eβ(−µtβ) +

Λ

µ

[
1− Eβ(−µtβ)

]
=

Λ

µ
= 1,

since the recruitment rate and discard rate are assumed to be equal. This means the set Σ+ is a positively invariant
set for the fractional network-based SIRS epidemic model.

4.2. The basic reproductive ratio R0 and the existences of equilibrium states

In the theory of epidemiology, one of essential problems in many preceding studies is to find equilibrium states
of the proposed epidemic model including malware-free equilibrium P0 and endemic equilibrium P∗. Beside this,
we also focus on evaluating an important threshold value of the epidemiological theory, namely basic reproductive
ratio R0. This value plays a key role in not only the existence of endemic equilibrium but also the asymptotic
behavior of the model. In order to find the equilibrium states, we solve the following algebraic system

Λ− σkΦSk − (µ+ uk)Sk + ωRk = 0

σkΦSk − µIk − rIk
1 + γΦ

= 0

ukSk +
rIk

1 + γΦ
− (µ+ ω)Rk = 0.

(6)
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If the absence of malware programs on the network happens, the fractional network-based SIRS epidemic model
admits a unique malware-free equilibrium P0 =

(
S0
1 , I

0
1 , R

0
1, . . . , S

0
n, I

0
n, R

0
n

)
given by

P0 =

(
µ+ ω

µ+ ω + u1
, 0,

u1

µ+ ω + u1
, . . . ,

µ+ ω

µ+ ω + un
, 0,

un

µ+ ω + un

)
︸ ︷︷ ︸

3n

,

while if malware programs persist on complex heterogeneous network, the proposed epidemic model has at least
one endemic equilibrium P∗ under some certain conditions related to the basic reproductive ratio R0. Next, in
order to formulate the basic reproductive ratio R0, we will apply the next-generation matrix method proposed by
Diekmann et al. [7] with the following facts:

(i) There is only a unique compartment causing the malware spreading process on the network, that is the com-
partment of infectious nodes (I).

(ii) The state change from the compartment (I) to other compartments is only regarded as the transition of infected
individuals through the various compartments.

Therefore, according to next-generation matrix method, the gain term and loss term of the fractional network-

based SIRS epidemic model are defined by σkΦ(t)Sk(t) and µIk(t) +
rIk(t)

1 + γΦ(t)
, respectively. Next, for simplicity

in representations and computations, we denote ak = for each k = 1, n. Denote F and V by the rate matrix of
new infection’s appearance and the transition matrix of infected compartments at P0, respectively. Then, by some

computations, we receive V−1 =
1

µ+ r
In and F is a square matrix of order n given by

F =
σ(µ+ ω)

⟨k⟩



1

µ+ ω + u1

2

µ+ ω + u2

...
n

µ+ ω + un


[
P(1) 2P(2) · · · nP(n)

]
.

According to the next-generation matrix method, the basic reproductive ratio R0 is known as the largest eigenvalue
of the matrix FV−1, that is,

R0 =
σ(µ+ ω)

(µ+ r) ⟨k⟩

n∑
k=1

k2P(k)
(µ+ ω + uk)

=
σ(µ+ ω)⟨k2u⟩
(µ+ r) ⟨k⟩

, (7)

in which ⟨k2u⟩ =
n∑

k=1

k2P(k)
(µ+ ω + uk)

.

Remark 4.1. From the formula (7), we can conclude that

� The recruitment rate Λ doesn’t have any effect to the value of basic reproductive ratio R0 while according to
the formula of R0, it will be experienced a considerable change in the value of basic reproductive ratio R0 if
we adjust the control treatment uk. In particular, the stronger control input we carry out, the smaller basic
reproductive ratio we get.

� The basic reproductive ratio R0 depends on not only the model’s parameters but also the network structure,
that means the network heterogeneity can make malware programs easier to spread on the network.

Indeed, in order to discuss how parameters affect to the basic reproductive ratio R0, we evaluate the normalized
sensitivity indices of parameters to the threshold value R0 by applying the method of Nakul et al. [35]. Here, for
simplicity, we assume that the input control is constant, i.e., uk = u := const for all k = 1, n. As a result, the basic
reproductive ratio R0 becomes

R0 =
σ(µ+ ω)⟨k2⟩

(µ+ r) (µ+ ω + u) ⟨k⟩
.
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Then, the sensitivity index of a quantity X depending on a parameter λ is determined by ΥX
λ =

∂X

∂λ
× λ

X
. Then,

we receive some following sensitivity indices

ΥR0
σ = 1, ΥR0

⟨k2⟩
⟨k⟩

= 1, ΥR0
r = − r

µ+ r
, ΥR0

u = − u

µ+ ω + u
,

ΥR0
ω =

ωu

(µ+ ω) (µ+ ω + u)
, ΥR0

µ =
µ

µ+ ω

(
1− µ+ ω

µ+ ω + u
− µ+ ω

µ+ r

)
.

Remark 4.2. Due to the sensitivity index of the basic reproductive ratio R0 w.r.t the immunization control
uk is negative, we can conclude that the threshold value R0 will be controlled by increasing the control input.
However, it can be easily checked that the modulus of both ΥR0

uk
and ΥR0

r are less than the unity. This means
that there is a need to combine various actions for the better controlling of malware spread. In addition, since σ
is a parameter characterized for the malware spread due to infectious-contact, the basic reproductive ratio R0 is
strongly dependent on the transmission rate σ. Indeed, the sensitive index ΥR0

σ claims that how much percentage
the parameter σ increases, the basic reproductive ratio experienced a increase of the same percentage. Furthermore,

the network structure’s parameter ⟨k2⟩
⟨k⟩ is also one of the most sensitive parameters and its increase by 10% will

leads to the decrease of R0 with a same percentage, which means that the higher value of ⟨k2⟩
⟨k⟩ could follow that

more efforts must be done to eliminate malware programs on complex heterogeneous network.

Next, we investigate the existence of endemic equilibrium P∗ associated with the basic reproductive ratio R0.
For this aim, we denote

P∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) .

Then, the necessary condition for the existence of endemic equilibrium P∗ is given in following theorem:

Theorem 4.1. If the basic reproductive ratio R0 > 1 then the fractional network-based SIRS epidemic model
always has at least one endemic equilibrium P∗ = (S∗

1 , I
∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) defined by

S∗
k =

1

σkΦ∗

(
µ+

r

1 + γΦ∗

)
I∗k ,

R∗
k =

1

µ+ ω

[
r

1 + γΦ∗ +
uk

σkΦ∗

(
µ+

r

1 + γΦ∗

)]
I∗k ,

I∗k =
σkΦ

∗{
µ+ r

1+γΦ∗ + σkΦ∗ + σkΦ∗

µ+ω

[
r

1+γΦ∗ + uk

σkΦ∗

(
µ+ r

1+γΦ∗

)]} .
Proof. It is well-known that the endemic equilibrium P∗ = (S∗

1 , I
∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) of the fractional network-

based SIRS epidemic model is a solution of the system (6). Thus, by substituting consecutively the variables Sk

and Rk by Ik, we directly get that

Sk =
1

σkΦ

(
µ+

r

1 + γΦ

)
Ik

Rk =
1

µ+ ω

[
r

1 + γΦ
+

uk

σkΦ

(
µ+

r

1 + γΦ

)]
Ik,

for each k = 1, n. Then, by summing up side by side of the system (6), we receive

µ (Sk + Ik +Rk) = Λ,

and hence, we immediately obtain

Ik =
σkΦ{

µ+ r
1+γΦ + σkΦ+ σkΦ

µ+ω

[
r

1+γΦ + uk

σkΦ

(
µ+ r

1+γΦ

)]} .
Next, by definition of the probability function Φ(t), we obtain the following self-consistency equation

Φ =
1

⟨k⟩

n∑
k=1

kP(k)σkΦ{
µ+ r

1+γΦ + σkΦ+ σkΦ
µ+ω

[
r

1+γΦ + uk

σkΦ

(
µ+ d+ r

1+γΦ

)]} , (8)
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which is equivalent to

Φ

 1

⟨k⟩

n∑
k=1

kP(k)σk{
µ+ r

1+γΦ + σkΦ+ σkΦ
µ+ω

[
r

1+γΦ + uk

σkΦ

(
µ+ r

1+γΦ

)]} − 1

 = 0.

Here, we can see that the self-consistency equation (8) is a nonlinear equation w.r.t the variable Φ and if the
equation (8) has a non-trivial solution Φ ∈ (0, 1), the fractional network-based SIRS epidemic model admits an
endemic equilibrium P∗. Now, our aim is to determine conditions for the existence of at least one non-trivial
solution Φ ∈ (0, 1) of the equation (8). For this aim, we denote

F (Φ) =
1

⟨k⟩

n∑
k=1

kP(k)σkΦ{
µ+ r

1+γΦ + σkΦ+ σkΦ
µ+ω

[
r

1+γΦ + uk

σkΦ

(
µ+ r

1+γΦ

)]} .
Then, a solution Φ∗ ∈ (0, 1) of the equation F (Φ) − 1 = 0 is also a non-trivial solution of the equation (8). In
addition, it should be noted that

� The function F (Φ) is continuous in [0, 1] and differentiable on (0, 1).

� At the point Φ = 1, we have

F (1) =
1

⟨k⟩

n∑
k=1

kP(k)σk{
µ+ r

1+γ + σk + σk

µ+ω

[
r

1+γ + uk

σk

(
µ+ r

1+γ

)]} < 1.

� At the point Φ = 0, one gets

F (0) =
1

⟨k⟩

n∑
k=1

k2P(k)σ(µ+ ω)

(µ+ r) (µ+ ω + uk)
= R0.

Therefore, if the basic reproductive ratio R0 > 1 then it follows that F (0) > 1. By virtue of intermediate value
theorem, we can conclude that the equation F (Φ) − 1 = 0 has at least one solution Φ∗ ∈ (0, 1), that solves an
endemic equilibrium P∗ of the fractional network-based SIRS epidemic model.

Remark 4.3. Note that the condition R0 > 1 only ensures the existence of at least one endemic equilibrium P∗
but does not imply the uniqueness of this equilibrium. Furthermore, even if the condition R0 < 1 is satisfied, we
still can’t conclude that the malware programs are completely absence on complex heterogeneous network, that is,
the requirement R0 < 1 is only the necessary but not sufficient for the malware elimination. Now, we will find a
threshold value that ensures the non-existence of any endemic equilibrium P∗. For this aim, denote

R0 =
σ(µ+ ω)

⟨k⟩

n∑
k=1

k2P(k)

(µ+ ω + vk)
(
µ+ r

1+γ

) =
σ(µ+ ω)⟨k2u⟩(
µ+ r

1+γ

)
⟨k⟩

.

We can see that the threshold value R0 satisfies R0 > R0. In addition, for each Φ ∈ (0, 1), we have

F (Φ) =
1

⟨k⟩

n∑
k=1

kP(k)σk{
µ+ r

1+γΦ + σkΦ+ σkΦ
µ+ω

[
r

1+γΦ + uk

σkΦ

(
µ+ r

1+γΦ

)]}
<

σ

⟨k⟩

n∑
k=1

k2P(k)

µ+ r
1+γΦ + uk

µ+ω

(
µ+ r

1+γΦ

)
< R0.

As a result, if R0 < 1 then we can conclude that F (Φ) < 1 for all Φ ∈ [0, 1] and hence, the equation F (Φ)− 1 = 0
has no solution Φ ∈ [0, 1], that is, there isn’t any endemic equilibrium P∗ when R0 < 1. Therefore, when the
number of infectious nodes is large and the capacity of treatment is reached, the condition R0 < 1 is not enough
for the elimination of malware programs.
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4.3. The asymptotic stability of malware-free equilibrium P0

In the following, based on linearization method for fractional differential systems (see [6]), we discuss the
relationship between basic reproductive ratio R0 and the local asymptotic stability of malware-free equilibrium P0.

Theorem 4.2. The following assertions are fulfilled

(i) If R0 > 1 then the malware-free equilibrium P0 is unstable.

(ii) If R0 < 1 then the malware-free equilibrium P0 is locally asymptotically stable.

Proof. According to the stability theory of fractional differential systems, the local asymptotic stability of malware-
free equilibrium P0 depends on the modulus of arg (λj), where the value λj is an eigenvalue of Jacobi matrix J(P0)
at the point P0, defined by

J(P0) =


J11 J12 · · · J1n
J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn

 .

Here, for each k, j = 1, n, the matrices Jkk and Jkj are square matrices of order 3 given by

Jkk =


−(µ+ uk) −σkS

0
kkP(k)
⟨k⟩ ω

0
σkS

0
kkP(k)
⟨k⟩ − (µ+ r) 0

uk r −(µ+ ω)

 , Jkj =


0 −σkS

0
kjP(j)
⟨k⟩ 0

0
σkS

0
kjP(j)
⟨k⟩ 0

0 0 0

 .

Therefore, by applying the mathematical induction principle, we immediately get that the characteristic polynomial
with respect to Jacobian matrix J(P0) is given by

det
(
λI3n − J(P0)

)
=
(
λ+ µ

)n [ n∏
k=1

(
λ+ (µ+ ω + uk)

)] (
λ+ (µ+ r)

)n−1 ×[
λ+ (µ+ r)− σ(µ+ ω)

⟨k⟩

n∑
k=1

k2P(k)
µ+ ω + uk

]

=
(
λ+ µ

)n [ n∏
k=1

(
λ+ (µ+ ω + uk)

)] (
λ+ (µ+ r)

)n−1 [
λ+ (µ+ r)(1−R0)

]
.

Therefore, we directly get that the characteristic equation det
(
λI3n − J(P0)

)
= 0 admits n roots consisting of a

negative solution λ11 = −µ with multiplicity n, a negative solution λ21 = −(µ + r) with multiplicity n − 1 and
n negative solutions λ3k = −(µ + ω + uk) for each k = 1, n. According to Theorem 7.20 in [8], the malware-free
equilibrium P0 is locally asymptotically stable if and only if∣∣arg (λj

)∣∣ > βπ

2
for all j = 1, 3n.

Indeed, since Jacobian matrix J(P0) has 3n − 1 negative real eigenvalues λ11 = −µ, λ21 = −(µ + r) and λ3k =

−(µ + ω + uk), we immediately get that their arguments are
∣∣arg (λj

)∣∣ = π >
βπ

2
for all j = 1, 3n− 1. As a

consequence, the local asymptotic stability of P0 only depends on the last eigenvalue

λ41 = −(µ+ r)(1−R0).

Finally, we can conclude that

� If R0 > 1 then it implies that the eigenvalue λ41 is a positive real value and hence, its argument is 0. Hence,
the malware-free equilibrium P0 is unstable if R0 > 1.

� If R0 < 1 then it implies that the eigenvalue λ41 is negative and hence, its argument is π >
βπ

2
. Hence, the

malware-free equilibrium P0 is locally asymptotically stable if R0 < 1.
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According to Remark 4.3, note that the condition R0 < 1 is only necessary but not sufficient for the malware
elimination on complex heterogeneous network. In the following, we discuss the conditions for which the malware-
free equilibrium P0 is globally attractive, i.e., the malware spread fades out.

Theorem 4.3. Denote

R̃0 =
σ(µ+ ω)⟨k2u⟩

µ⟨k⟩
.

Then, if the threshold value R0 < 1, the malware-free equilibrium P0 is globally asymptotically stable.

Proof. Let (S1(t), I1(t), R1(t), . . . , Sn(t), In(t), Rn(t)) be a non-negative solution of the fractional network-based
SIRS epidemic model satisfying the initial condition (5). Since the set Σ+ is a positively invariant set of the
proposed network-based epidemic model, we directly get that{

0 < Sk(t) ≤ 1

Rk(t) ≤ 1− Sk(t)− Ik(t),

for each k = 1, n and t ≥ 0. Hence, from the first fractional differential equation of (6), it implies that

C
0 Dβ

t Sk(t) = Λ− σkΦ(t)Sk(t)− (µ+ uk)Sk(t) + ωRk(t)

≤ Λ− (µ+ uk)Sk(t) + ω (1− Sk(t)− Ik(t))

≤ (µ+ ω)− (µ+ ω + uk)Sk(t).

Consider the following auxiliary system

C
0 Dβ

t Sk(t) = (µ+ ω)− (µ+ ω + uk)Sk(t).

This fractional differential system admits a unique positive equilibrium S0
k =

µ+ ω

µ+ ω + uk
, which is globally asymp-

totically stable. Then, by using fractional comparison principle, it follows that for any ε > 0, there exists a
sufficiently large time T0 such that the inequality Sk(t) ≤ S0

k + ε holds for all t > T0. Then, for each k = 1, n and
for all t > T0, the non-negativeness of the function Ik(t) implies that

C
0 Dβ

t Ik(t) = σkΦ(t)Sk(t)− µIk(t)−
rIk(t)

1 + γΦ(t)

≤ σk

(
S0
k + ε

)
Φ(t)− µIk(t).

Next, by definition of the probability Φ(t), we directly get that

C
0 Dβ

t Φ(t) ≤
1

⟨k⟩

n∑
k=1

kP(k)
[
σk

(
S0
k + ε

)
Φ(t)− µIk(t)

]
=

[
1

⟨k⟩

n∑
k=1

kP(k)σk

(
µ+ ω

µ+ ω + uk
+ ε

)]
Φ(t)− µΦ(t)

= µΦ(t)

[
R̃0 − 1 +

εσ⟨k2⟩
µ⟨k⟩

]
,

in which ⟨k2⟩ = 1

⟨k⟩

n∑
k=1

k2P(k) represents for the second origin moment of node’s degree. Then, the assumption

R̃0 < 1 indicates that we can choose ε > 0 sufficiently small such that

R̃0 +
εσ⟨k2⟩
µ⟨k⟩

< 1.
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In addition, due to the assumption that malware programs are present on the network, it is true that Φ(0) > 0
and hence, by virtue of fractional comparison theorem, we receive

0 ≤ Φ(t) ≤ Φ(0)Eβ

(
µ

(
R̃0 − 1 +

εσ⟨k2⟩
µ⟨k⟩

)
tβ
)
, t ≥ 0,

which follows that lim
t→∞

Φ(t) = 0. Based on the definition of Φ(t), we also have lim
t→∞

Ik(t) = 0 for all k = 1, n. Thus,

for any ε > 0, there exists a sufficiently large T1 > 0 such that the function Ik(t) < ε for all t > T1. As a result,
we receive

Φ(t) =
1

⟨k⟩

n∑
k=1

kP(k)Ik(t) <
ε

⟨k⟩

n∑
k=1

kP(k) = ε for all t > T1.

Hence, for all t > T1, we have

C
0 Dβ

t Sk(t) = Λ− σkΦ(t)Sk(t)− (µ+ uk)Sk(t) + ω (1− Sk(t)− Ik(t))

> Λ− Sk(t) (σkε+ µ+ ω + uk) + ω − ωε

= (µ+ ω − ωε)− (σkε+ µ+ ω + uk)Sk(t).

Note that the following auxiliary system C
0 Dβ

t Sk(t) = (µ + ω − ωε) − (σkε+ µ+ ω + uk)Sk(t) admits a unique

equilibrium S0,ε
k =

µ+ ω − ωε

σkε+ µ+ ω + uk
. Thus, for a sufficiently large time t, it yields

Sk(t) >
µ+ ω − ωε

σkε+ µ+ ω + uk
.

Furthermore, for all t > T1, we also have C
0 Dβ

t Rk(t) > −(µ+ ω)Rk(t) +
uk(µ+ ω − ωε)

σkε+ µ+ ω + uk
, which follows that

Rk(t) >
uk(µ+ ω − ωε)

(σkε+ µ+ ω + uk)(µ+ ω)
.

Finally, by letting ε → 0, we directly obtain

lim
t→∞

Sk(t) =
µ+ ω

µ+ ω + uk
= S0

k

lim
t→∞

Rk(t) =
uk

µ+ ω + uk
= R0

k.

Therefore, the proof is completed.

Remark 4.4. It is easy to check that

R0 < R̃0,

which means that the condition R0 < 1 is not sufficient enough to ensure the global attractivity of the malware-free
equilibrium P0 and in this case, one cannot eradicate the malware attacks unless the value of R0 decreases such that
R0 < R̃0 < 1 for some critical value R̃0. In addition, it should be noted that even though the constant treatment
rate r may be not enough for the malware elimination, we still can make the disease extinct while improving the
immunization rate such that the threshold value R̃0 < 1. In another hand, immunization strategy sometimes is
more effective than treatment strategy in controlling the malware spread.

4.4. Bifurcation analysis

According to the results of Theorem 4.3, we can see that the condition R0 < 1 is not enough for the absence
of malware programs on complex heterogeneous network and it requires to stifle the cure parameter such that the
basic reproductive ratio R0 reaches to the threshold value R̃0. In addition, as a consequence of Remark 4.3, there
may have an endemic equilibrium P∗ co-existing with a stable malware-free equilibrium P0 even R0 < 1. This leads
to a bifurcating phenomena on the behavior of network-based epidemic models, so-called backward bifurcation.
Some epidemiological mechanisms that can induce the phenomenon of backward bifurcation in epidemic models
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are identified as follows: the use of an imperfect vaccine, the effects of limited resources for treatment, exogenous
re-infection in the transmission process or sometimes, since the initial infectious population size is too large, etc.
For more clearly, a schematic diagram of backward bifurcation is depicted in Figure 3.

Figure 3: The schematic diagram of backward bifurcation phenomena

In the following, we will establish the necessary and sufficient condition on the model’s parameter for which the
backward bifurcation at R0 = 1 occurs.

Theorem 4.4. The fractional network-based SIRS epidemic model exhibits a backward bifurcation at R0 = 1 if

γ >
(µ+ r)⟨k3a⟩⟨k⟩

r⟨k2u⟩

(
1 +

r

µ+ ω

)
,

where the term ⟨k3a⟩ = 1

⟨k⟩

n∑
k=1

k3P(k)
µ+ ω + uk

.

Proof. In this proof, we consider the scenario that endemic equilibrium exists, i.e., the infectious state Ik(t) is
positive for all t ≥ 0 and i = 1, 2, . . . , n and hence, it implies that Φ(t) > 0 for all t ≥ 0. In addition, note
that an endemic equilibrium of the fractional network-based SIRS epidemic model is a non-trivial solution of the
self-consistency equation (8) or equivalently, it must satisfy the following nonlinear equation

1

⟨k⟩

n∑
k=1

σk2P(k){(
1 + uk

µ+ω

)(
µ+ r

1+γΦ

)
+ σkΦ

(
1 + r

(µ+ω)(1+γΦ)

)} = 1.

Next, by multiplying both sides of the above equation by
(µ+ ω)⟨k2u⟩
(µ+ r)⟨k⟩

, it can be represented as an expression in

terms of R0 and Θ. As a result, one gets

1

⟨k⟩

n∑
k=1

R0k
2P(k){

(µ+ω)⟨k2u⟩
(µ+r)⟨k⟩

(
1 + uk

µ+ω

)(
µ+ r

1+γΦ

)
+ kR0Φ

(
1 + r

(µ+ω)(1+γΦ)

)} = 1. (9)

Then, the equality (9) can be known as the implicit equation of endemic equilibrium curve in the (R0,Θ)−positive
quadrant and the function Θ can be regarded as a function of R0. Now, in order to derive a necessary and
sufficient condition of the model’s parameters for which the backward bifurcation phenomena occurs, we evaluate

the derivative
∂Θ

∂R0
at point (R0,Θ) = (1, 0) by implicitly differentiating the equation (9) w.r.t. the variable R0.

Indeed, we directly get that

n∑
k=1

A1 −A2{
(µ+ω)⟨k2u⟩
(µ+r)⟨k⟩

(
1 + uk

µ+ω

)(
µ+ r

1+γΦ

)
+ kR0Φ

(
1 + r

(µ+ω)(1+γΦ)

)}2 = 0, (10)
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where the terms A1 and A2 are given as follows:

A1 =
k2P(k)
⟨k⟩

{
(µ+ ω)⟨k2u⟩
(µ+ r)⟨k⟩

(
1 +

uk

µ+ ω

)(
µ+

r

1 + γΦ

)
+ kR0Φ

(
1 +

r

(µ+ ω)(1 + γΦ)

)}
,

A2 =
R0k

2P(k)
⟨k⟩

{
− (µ+ ω)⟨k2u⟩

(µ+ r)⟨k⟩

(
1 +

uk

µ+ ω

)
rγ

(1 + γΦ)
2

∂Φ

∂R0
+ kΦ

(
1 +

r

(µ+ ω)(1 + γΦ)

)

+ kR0
∂Φ

∂R0

(
1 +

r

(µ+ ω)(1 + γΦ)

)
− rγkR0Φ

(µ+ ω) (1 + γΦ)
2

∂Φ

∂R0

}
.

At the point (R0,Θ) = (1, 0), these above expressions are

A1 =
k2P(k)
⟨k⟩

{
(µ+ ω)⟨k2u⟩

⟨k⟩

(
1 +

uk

µ+ ω

)}
A2 =

k2P(k)
⟨k⟩

{
−rγ(µ+ ω)⟨k2u⟩

(µ+ r)⟨k⟩

(
1 +

uk

µ+ ω

)
+ k

(
1 +

r

µ+ ω

)}
∂Φ

∂R0

∣∣∣
(R0,Θ)=(1,0)

.

As a result, the equation (10) becomes

1

⟨k⟩

n∑
k=1

k2P(k)

{
−rγ(µ+ ω)⟨k2u⟩

(µ+ r)⟨k⟩

(
1 +

uk

µ+ ω

)
+ k

(
1 +

r

µ+ ω

)}
∂Φ

∂R0

∣∣∣
(R0,Θ)=(1,0){

(µ+ ω)⟨k2u⟩
⟨k⟩

(
1 +

uk

µ+ ω

)}2 = 1,

or equivalently, {
− rγ

µ+ r
+

⟨k3a⟩⟨k⟩
⟨k2u⟩

(
1 +

r

µ+ ω

)}
∂Φ

∂R0

∣∣∣
(R0,Θ)=(1,0)

= 1.

Since we consider locally Φ as a function of R0, the backward bifurcation is characterized by a negative value of

the derivative
∂Φ

∂R0
at the point (R0,Θ) = (1, 0), which implies that

− rγ

µ+ r
+

⟨k3a⟩⟨k⟩
⟨k2u⟩

(
1 +

r

µ+ ω

)
< 0.

Hence, the proof is completed.

5. Stabilization problem for a controlled fractional network-based SIRS epidemic model on wireless
sensor network

Let the parameters of fractional network-based SIRS epidemic model be as follows:

Λ = µ = 0.14, ω = 0.1, σ = 0.8, r = 0.6, γ = 2. (11)

Our aim in this section is to consider a stabilization problem for a controlled fractional network-based SIRS epidemic
model on wireless sensor network which are regarded as a Barabási-Albert scale-free network (see Figure 4).
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Figure 4: A simple wireless sensor network

Here, we assume that the maximum contact of a node on the network is n = 2 and the probability, that a randomly

node has degree k, is given by P(k) = ck−3, where c is a parameter such that

n∑
k=1

P(k) = 1. Thus, by using

some simple computations, we obtain c = 8
9 . In addition, we can also compute the parameters ⟨k⟩ and ⟨k2⟩, that

characterize the average degree and second moment of the network, as follows:

⟨k⟩ =
n∑

k=1

kP(k) =
10

9
, ⟨k2⟩ =

n∑
k=1

k2P(k) =
4

3
.

This section considers a scenario when epidemic disease due to malware programs breaks out and indeed, based
on the above parameters, we can see that the basic reproductive ratio R0 without control input u(t) satisfies
R0 = 1.8018 > 1. According to the result of Theorem 4.2, it is true that the malware-free equilibrium is unstable.
In addition, to the best of our knowledge, it is not reasonable to administer the intervention at a constant rate when
carrying out the immunization for complex heterogeneous network to deal with malware propagation. Motivated
by aforesaid, our aim is to find a time-dependent immunization policy u(t) to stabilize the unstable malware-free
equilibrium of the fractional network-based SIRS epidemic model, that is, the input control will steer the model’s
state to the no-malware state P̃0 = (1, 0, 0, 1, 0, 0, . . . , 1, 0, 0)︸ ︷︷ ︸

3n

as time increases. Then, by denoting

ẽ(t) = x̃(t)− P̃0 = (S1 − 1, I1, R1, S2 − 1, I2, R2, . . . , Sn − 1, In, Rn)︸ ︷︷ ︸
3n

.

Hence, the requirement that the fractional network-based SIRS epidemic model is stabilized to malware-free equi-
librium state is equivalent to the state vector e(t) approaches to zero state as time increases. Then, we directly
receive a system of n following fractional differential systems

C
0 Dβ

t Si(t) = Λ− σiΦ(t) (Si(t)− 1)− µ (Si(t)− 1)− ui(t) (Si(t)− 1) + ωRi(t)

C
0 Dβ

t Ii(t) = σiΦ(t) (Si(t)− 1)− µIi(t)−
rIi(t)

1 + γΦ(t)

C
0 Dβ

t Ri(t) = ui(t) (Si(t)− 1) +
rIi(t)

1 + γΦ(t)
− (µ+ ω)Ri(t),

(12)

for each i = 1, 2, . . . , n, where ci are the positive constants to keep a balance in the size of infection and u2
i (t)

reflects the severity of area effects of the immunization. It is well-known that there have been various works on
the stabilization problems for network-based nonlinear systems [1, 19, 29, 30] and fractional Takagi-Sugeno fuzzy
systems [2, 28, 29, 31, 46]. However, to the best of our knowledge, there doesn’t have any literature studying
the stabilization problem for fractional network-based differential systems. This may come from the complexity
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in computation and numerical simulation of dynamical systems that take into account both large-scale systems
and fractional differential systems. Hence, in this section, we will apply the interconnected Takagi-Sugeno model
approach to design an appropriate fuzzy state-feedback controller u(t) for stabilizing the proposed network-based
epidemic model. As mentioned, we firstly consider the ith-differential subsystem (4) of the fractional network-
based SIRS epidemic model and apply the non-linearity sector method (see [24] for more detail) to construct
the interconnected Takagi-Sugeno fuzzy system for this subsystem. Due to the fact that Λ = µ, i.e., the total
population Ni(t) is unchanged and in order to reduce the complexity of computations, the behavior in time of
the state3 function Si = 1 − Ii − Ri can be identified by considering only the (Ii, Ri)-dynamics. Based on the
results of Lemma 4.1, it should be noted that the density function Si(t) of susceptible individuals is always positive
and bounded above by 1. Additionally, the ith-group is assumed to be received a constant rate Λ of new node’s
attendance. Hence, we reasonably assume that Si(t) ∈ [0.1, 0.9] for all t > 0, yielding Ii +Ri ∈ [0.1, 0.9]. Then, we
can rewrite the fractional network-based differential system (12) as the following nonlinear dynamic system with

the state vector ei(t) =
[
Ii(t) Ri(t)

]⊤
and the control input ui(t):

C
0 Dβ

t

[
Ii(t)

Ri(t)

]
=

[
−µ− r

1+γΦ(t) +
σiiP(i)(Si(t)−1)

⟨k⟩ 0

r
1+γΦ(t) −(µ+ ω)

][
Ii(t)

Ri(t)

]
+

σi(Si(t)−1)
⟨k⟩

n∑
j=1
j ̸=i

jP(j)Ij(t)

0

+

[
0

Si(t)− 1

]
ui(t)

or equivalently,

C
0 Dβ

t ei(t) =

[
−µ− r

1+γΦ(t) +
σiiP(i)(Si(t)−1)

⟨k⟩ 0

r
1+γΦ(t) −(µ+ ω)

]
ei(t)

+

n∑
j=1
j ̸=i

[
σi(Si(t)−1)

⟨k⟩ jP(j) 0

0 0

]
ej(t) +

[
0

Si(t)− 1

]
ui(t) (13)

Now, in order to establish a corresponding interconnected Takagi-Sugeno fuzzy system for the fractional network-

based SIRS epidemic model, we regard two non-constant terms Si(t) and
r

1 + γΦ(t)
in the expression (13) as the

premise variables. Then, for each of these two terms, the weighting functions of the ith-differential subsystem are
computed as follows:

(i) The premise variable is zi1 = Si ∈ [0.1, 0.9]. Then, the corresponding weighting functions are

η1i0 (zi1) =
1− zi1
0.8

η1i1 (zi1) = 1− η1i0 (zi1) =
zi1 − 0.2

0.8
.

Then, by applying Lemma 1.1 in [2], the premise variable zi1 can be represented as a weighted sum

zi1 = 0.1η1i0 (zi1) + 0.9η1i1 (zi1) .

(ii) The premise variable is zi2 =
r

1 + γΦ(t)
∈
[

r
1+γ , r

]
= [0.2, 0.6]. Then, the corresponding weighting functions

are given by

η2i0 (zi2) =
5(1− zi2)

2
η2i1 (zi2) = 1− η2i0 (zi2) =

5zi2 − 3

2
.

Then, the premise variable zi2 can be represented as a weighted sum

zi2 = 0.2η2i0 (zi2) + 0.6η2i1 (zi2) .

For each weighting function, we denote the corresponding fuzzy set by Fχ
ik for each i = 1, n, k = 0, 1 and χ = 1, 2,

i.e., the fuzzy set F 1
i0 corresponds to the weighting function η1i0(zi1) and for convenience in computation, we

use triangular membership functions to describe fuzzy sets in all fuzzy rules. The graphical representations of
antecedent fuzzy sets Fχ

ik are given in Figure 5.
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Figure 5: The membership functions of antecedent fuzzy sets F 1
ik and F 2

ik

As a consequence, this technique leads to 4n local models by combining 2n membership functions of antecedent

fuzzy sets F 1
ik and F 2

ik. Denote by zi(t) =
[
zi1(t) zi2(t)

]⊤
the measurable premise variable vector. Then, we can

establish an interconnected fractional Takagi-Sugeno fuzzy system for the ith-fractional network-based differential
subsystem (13) whose fuzzy rules are given as follows:

Rule Ep
i : If zi1 is Fχ

i0 and zi2 is Fχ
i1 then

C
0 Dβ

t ei(t) = Ap
i ei(t) +Bp

i ui(t) +

n∑
j=1
j ̸=i

αp
ijej(t),

where Ap
i , B

p
i and αp

ij are real matrices with appropriate matrix for all i = 1, n, p = 1, ri and ri = 4. Then, according
to the formulation (3), we directly receive the membership function wp

i (zi(t)), that indicates the activation degree
of the pth-local model of the subsystem Ei, as follows:

φp
i (zi(t)) = η1ikη

2
ij ,

wp
i (zi(t)) =

φp
i (zi(t))

ri∑
p=1

φp
i (zi(t))

.

Next, according to the formulation (2), the ith-fractional network-based differential subsystem (13) can be charac-
terized by the following interconnected fractional Takagi-Sugeno fuzzy system

C
0 Dβ

t ei(t) =

ri∑
p=1

wp
i (zi(t))

Ap
i ei(t) +Bp

i ui(t) +

n∑
j=1
j ̸=i

αp
ijej(t)

 (
i = 1, n

)
,

and the interconnected fractional Takagi-Sugeno fuzzy system for the fractional network-based SIRS epidemic
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model is given in following vector form

C
0 Dβ

t e(t) =



r1∑
p=1

wp
1 (z1(t))

Ap
1e1(t) +Bp

1u1(t) +

n∑
j=1
j ̸=i

αp
1jej(t)


...

rn∑
p=1

wp
n (zn(t))

Ap
nen(t) +Bp

nun(t) +

n∑
j=1
j ̸=i

αp
njej(t)




. (14)

In the following, based on the idea of parallel distributed compensation (PDC) introduced in [3, 49], we would
like to design a fuzzy state-feedback controller u(t) for stabilizing the unstable malware-free equilibrium of the
fractional network-based SIRS epidemic model. For this aim, according to the derivation in [30, 42], each subsystem
in form (4) of the fractional network-based SIRS epidemic model can be represented by the interconnected fractional
Takagi-Sugeno fuzzy system (14). Then, the pth-rule (p = 1, 2, 3) of fuzzy controller in the subsystem Ei can be
considered in following PDC form

Rule Ep
i : If zi1 is Fχ

i0 and zi2 is Fχ
i1 then

ui(t) = Kp
i xi(t).

Hence, the final output of the fuzzy state-feedback controller ui(t) of the subsystem Ei is

ui(t) =

ri∑
p=1

wp
i (zi(t))K

p
i xi(t)

(
i = 1, n

)
. (15)

Denote by u(t) = (u1(t), . . . ,un(t))
⊤

the fuzzy state-feedback controller for the fractional network-based SIRS
epidemic model. In the following, we will establish some necessary conditions for which the fuzzy state-feedback
controller u(t) stabilizes the unstable disease-free equilibrium of the proposed network-based epidemic model:

Theorem 5.1. Assume that there exist some symmetric positive definite matrices Pi, positive definite matrices
Qi ≻ 0, symmetric matrices Upm

i and Upm
ij , matrices Kp

i satisfying the following linear matrix inequalities

Qpm
i ⪯ Upm

i (LMI.1)(
αp
ij

)⊤
Pi + Piα

p
ij +

(
αm
ji

)⊤
Pj + Pjα

m
ji ⪯ 2Upm

ij (LMI.2)

U =


U1 U12 · · · U1n

U⊤
12 U2 · · · U2n

...
...

. . .
...

U⊤
1n U⊤

2n · · · Un

 ≺ 0, (LMI.3)

where for each i, j = 1, n, the matrices Ui and Uij (i ̸= j) are given by

Ui =


U11

i U12
i · · · U1ri

i

(U12
i )⊤ U22

i · · · U2ri
i

...
...

. . .
...

(U1ri
i )⊤ (U2ri

i )⊤ · · · Uriri
i

 , Uij =


U11

ij U12
ij · · · U

1rj
ij

U21
ij U22

ij · · · U
2rj
ij

...
...

. . .
...

Uri1
ij Uri2

ij · · · U
rirj
ij

 .

Then, the interconnected fractional Takagi-Sugeno fuzzy system (14) is asymptotically stable under the fuzzy state-
feedback control u(t).

Proof. Under the fuzzy state-feedback control ui(t) defined by the formula (15), the ith-interconnected fractional
Takagi-Sugeno fuzzy system (14) becomes

C
0 Dβ

t ei(t) =

ri∑
p=1

ri∑
m=1

wp
i (zi(t))w

m
i (zi(t))

(
Ap

i +Bp
i K

m
i

)
ei(t) +

ri∑
p=1

n∑
j=1

wp
i (zi(t))α

p
ijej(t). (16)
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Note that the stabilization of the ith-interconnected fractional Takagi-Sugeno fuzzy system (14) under the fuzzy
state-feedback controller ui(t) is equivalent to the asymptotic stability of the closed-loop interconnected fractional
Takagi-Sugeno fuzzy system (16). Here, we rewrite the fractional differential system (16) as follows:

C
0 Dβ

t ei(t) =

ri∑
p=1

ri∑
m=1

wp
i (zi(t))w

m
i (zi(t))

(
Ap

i +Bp
i K

m
i

)
ei(t) +

ri∑
p=1

n∑
j=1

wp
i (zi(t))α

p
ijej(t)

=

ri∑
p=1

[wp
i (zi(t))]

2
(
Ap

i +Bp
i K

p
i

)
ei(t) +

ri∑
p=1

n∑
j=1

wp
i (zi(t))α

p
ijej(t)

+

ri∑
p=1

ri∑
m=p+1

wp
i (zi(t))w

m
i (zi(t))

{(
Ap

i +Bp
i K

m
i

)
ei(t) +

(
Am

i +Bm
i Kp

i

)
ei(t)

}
.

For simplicity in representation, we use the notations wp
i , w

m
i instead of the terms wp

i (zi(t)) and wm
i (zi(t)). In

addition, for each p,m = 1, ri and i = 1, n, we denote

Gpm
i = Ap

i +Bp
i K

m
i , Qpm

i = (Gpm
i )

⊤
Pi + PiG

pm
i .

Then, we receive the closed-loop interconnected fractional Takagi-Sugeno fuzzy system in following compact form

C
0 Dβ

t ei(t) =

ri∑
p=1

(wp
i )

2
Gpp

i ei(t) +

ri∑
p=1

n∑
j=1

wp
i α

p
ijej(t) +

ri∑
p=1

ri∑
m=p+1

wp
iw

m
i

(
Gpm

i +Gmp
i

)
ei(t). (17)

Next, we consider the Lyapunov function for the system (17) as follows:

V (e(t)) =

n∑
i=1

Vi (e(t)) ,

where the function Vi (e(t)) is given by Vi (e(t)) = e⊤i (t)Piei(t). Next, by taking the fractional derivative of order
β in Caputo sense of the function Vi (e(t)) along the solution of (17) and using Lemma 2.2, we receive

C
0 Dβ

t Vi (e(t)) ≤
[
C
0 Dβ

t e
⊤
i (t)

]
Piei(t) + e⊤i (t)Pi

[
C
0 Dβ

t ei(t)
]
.

Next, by using the right-hand side of the fractional differential equation (17), we directly obtain

C
0 Dβ

t Vi (e(t)) ≤
ri∑

p=1

(wp
i )

2
e⊤i (t)

{
(Gpp

i )
⊤
Pi + PiG

pp
i

}
ei(t)

+

ri∑
p=1

ri∑
m=p+1

wp
iw

m
i e⊤i (t)

{
(Gpm

i )
⊤
Pi + PiG

pm
i + (Gmp

i )
⊤
Pi + PiG

mp
i

}
ei(t)

+

ri∑
p=1

n∑
j=1

wp
i e

⊤
j (t)

(
αp
ij

)⊤
Piei(t) +

ri∑
p=1

n∑
j=1

wp
i e

⊤
i (t)Piα

p
ijej(t)

=

ri∑
p=1

(wp
i )

2
e⊤i (t)Q

pp
i ei(t) +

ri∑
p=1

ri∑
m=p+1

wp
iw

m
i e⊤i (t) {Q

pm
i +Qmp

i } ei(t)

+

ri∑
p=1

n∑
j=1

wp
i e

⊤
j (t)

(
αp
ij

)⊤
Piei(t) +

ri∑
p=1

n∑
j=1

wp
i e

⊤
i (t)Piα

p
ijej(t).
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After that, by using the expression

rj∑
m=1

wm
j (zj(t)) = 1 and the inequality (LMI.1), we deduce that

C
0 Dβ

t Vi (e(t)) ≤
ri∑

p=1

(wp
i )

2
e⊤i (t)U

pp
i ei(t) +

ri∑
p=1

ri∑
m=p+1

wp
iw

m
i e⊤i (t) {U

pm
i +Ump

i } ei(t)

+

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤j (t)

(
αp
ij

)⊤
Piei(t) +

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤i (t)Piα

p
ijej(t)

≤
n∑

i=1

[w1
i ei(t) · · · wri

i ei(t)
]  U11

i · · · U1ri
i

...
. . .

...

(U1ri
i )⊤ · · · Uriri

i


w

1
i ei(t)
...

wri
i ei(t)




+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤j (t)

(
αp
ij

)⊤
Piei(t) +

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤i (t)Piα

p
ijej(t)

=

n∑
i=1

[w1
i ei(t) · · · wri

i ei(t)
]
Ui

w
1
i ei(t)
...

wri
i ei(t)




+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤j (t)
(
αp
ij

)⊤
Piei(t)

2
+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤i (t)Piα
p
ijej(t)

2

+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤j (t)
(
αp
ij

)⊤
Piei(t)

2
+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤i (t)Piα
p
ijej(t)

2
.
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Then, by changing indices and the inequality (LMI.2), we directly receive

C
0 Dβ

t Vi (e(t)) ≤
n∑

i=1

[w1
i ei(t) · · · wri

i ei(t)
]
Ui

w
1
i ei(t)
...

wri
i ei(t)




+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤j (t)
(
αp
ij

)⊤
Piei(t)

2
+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤i (t)Piα
p
ijej(t)

2

+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤i (t)
(
αm
ji

)⊤
Pjej(t)

2
+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j

e⊤j (t)Pjα
m
jiei(t)

2

=

n∑
i=1

[w1
i ei(t) · · · wri

i ei(t)
]
Ui

w
1
i ei(t)
...

wri
i ei(t)


+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤j (t)

(
αp
ij

)⊤
Pi + Pjα

m
ji

2
ei(t)

+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤i (t)

Piα
p
ij +

(
αm
ji

)⊤
Pj

2
ej(t)

≤
n∑

i=1

[w1
i ei(t) · · · wri

i ei(t)
]
Ui

w
1
i ei(t)
...

wri
i ei(t)


+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤j (t)

Upm
ij

2
ei(t)

+

n∑
i=1

ri∑
p=1

wp
i

n∑
j=1

rj∑
m=1

wm
j e⊤i (t)

Upm
ij

2
ej(t)

=
[
w1

1e1(t) · · · wr1
1 e1(t) · · · w1

nen(t) · · · wrn
n en(t)

]
U



w1
1e1(t)
...

wr1
1 e1(t)
...

w1
nen(t)
...

wrn
n en(t)


.

For simplicity, we denote we(t) =
[
w1

1e1(t) · · · wr1
1 e1(t) · · · w1

nen(t) · · · wrn
n en(t)

]
∈ Rn×ri . Then, by

using the linear matrix inequality (LMI.3) and since the fact that U is a symmetry matrix, Rayleigh inequality can
be applied to show that there exists a negative constant λmax (U) such that

C
0 Dβ

t Vi (e(t)) ≤ λmax (U) ∥we(t)∥2 < 0.

Additionally, since the matrix Pi is symmetric positive definite then by applying Rayleigh inequality, there exist
two positive constants λmin (Pi) and λmax (Pi) such that

λmin (Pi) ∥e(t)∥2 ≤ Vi (e(t)) ≤ λmax (Pi) ∥e(t)∥2.

Finally, we can apply the result of Theorem 2.2 to guarantee that the interconnected fractional Takagi-Sugeno
fuzzy system (14) is asymptotically stable.

Remark 5.1. It should be noted that the conditions of Theorem 5.1 are not easy to verify by MatLab toolbox.
Therefore, we will apply Schur complement theorem to transform the linear matrix inequalities (LMI.1), (LMI.2)
and (LMI.3) into some linear matrix inequalities that can be solvable more easily. To do this, for each i, j = 1, n
and p,m = 1, ri, we carry out the following transformations

Ci = P−1
i , Kp

i = Wp
iC

−1
i , Ũpm

i = CiU
pm
i Ci, Ũpm

ij = CiU
pm
ij Cj +CjU

pm
ij Ci
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and

Q̃pm
i = Ci

{
(Gpm

i )
⊤
Pi + PiG

pm
i

}
Ci

= Ci

{
(Ap

i +Bp
i K

m
i )

⊤
Pi + Pi (A

p
i +Bp

i K
m
i )
}
Ci

= Ci (A
p
i )

⊤
+Ap

iCi +Bp
i W

m
i + (Wm

i )
⊤
(Bp

i )
⊤
.

Next, by multiplying on the left and right of the matrices Ui and Uij by diag [Ci, . . . ,Ci]︸ ︷︷ ︸
n

, we obtain

Ũi =


Ũ11

i Ũ12
i · · · Ũ1ri

i

(Ũ12
i )⊤ Ũ22

i · · · Ũ2ri
i

...
...

. . .
...

(Ũ1ri
i )⊤ (Ũ2ri

i )⊤ · · · Ũriri
i



Ũij =


Ũ11

ij Ũ12
ij · · · Ũ

1rj
ij

Ũ21
ij Ũ22

ij · · · Ũ
2rj
ij

...
...

. . .
...

Ũri1
ij Ũri2

ij · · · Ũ
rirj
ij

 .

Hence, we can rewritten the system of linear matrix inequalities in Theorem 5.1 as follows:

Q̃pm
i ⪯ Ũpm

i (LMI.4)(
αp
ij

)⊤
Ci +Ciα

p
ij +

(
αm
ji

)⊤
Cj +Cjα

m
ji ⪯ 2Ũpm

ij (LMI.5)

Ũ =


Ũ1 Ũ12 · · · Ũ1n

Ũ⊤
12 Ũ2 · · · Ũ2n

...
...

. . .
...

Ũ⊤
1n Ũ⊤

2n · · · Ũn

 ≺ 0. (LMI.6)

Under the above model’s parameters (11), the interconnected fractional Takagi-Sugeno fuzzy system for the
fractional network-based SIRS epidemic model can be presented by the following fuzzy rules:

Rule E1
i : If zi1 is F 1

i0 and zi2 is F 2
i0 then C

0 Dβ
t ei(t) = A1

i ei(t) +B1
i ui(t) +

n∑
j=1
j ̸=i

α1
ijej(t),

Rule E2
i : If zi1 is F 1

i0 and zi2 is F 2
i1 then C

0 Dβ
t ei(t) = A2

i ei(t) +B2
i ui(t) +

n∑
j=1
j ̸=i

α2
ijej(t),

Rule E3
i : If zi1 is F 1

i1 and zi2 is F 2
i0 then C

0 Dβ
t ei(t) = A3

i ei(t) +B3
i ui(t) +

n∑
j=1
j ̸=i

α3
ijej(t),

Rule E4
i : If zi1 is F 1

i1 and zi2 is F 2
i1 then C

0 Dβ
t ei(t) = A4

i ei(t) +B4
i ui(t) +

n∑
j=1
j ̸=i

α4
ijej(t),
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where for i = 1, 2, we have

A1
1 =

[
−0.916 0
0.2 −0.24

]
, B1

1 =

[
0

−0.9

]
, α1

12 =

[
−0.144 0

0 0

]
A2

1 =

[
−1.316 0
0.6 −0.24

]
, B2

1 =

[
0

−0.9

]
, α2

12 =

[
−0.144 0

0 0

]
A3

1 =

[
−0.404 0
0.2 −0.24

]
, B3

1 =

[
0

−0.1

]
, α3

12 =

[
−0.016 0

0 0

]
A4

1 =

[
−0.804 0
0.6 −0.24

]
, B4

1 =

[
0

−0.1

]
, α4

12 =

[
−0.016 0

0 0

]
A1

2 =

[
−0.628 0
0.2 −0.24

]
, B1

2 =

[
0

−0.9

]
, α1

21 =

[
−1.152 0

0 0

]
A2

2 =

[
−1.028 0
0.6 −0.24

]
, B2

2 =

[
0

−0.9

]
, α2

21 =

[
−1.152 0

0 0

]
A3

2 =

[
−0.372 0
0.2 −0.24

]
, B3

2 =

[
0

−0.1

]
, α3

21 =

[
−0.128 0

0 0

]
A4

2 =

[
−0.772 0
0.6 −0.24

]
, B4

2 =

[
0

−0.1

]
, α4

21 =

[
−0.128 0

0 0

]
.

After that, by applying LMI toolbox in MATLAB for the proposed linear matrix inequalities (LMI.4), (LMI.5) and
(LMI.6), we directly obtain the symmetric positive definite matrices Ci, Pi and the matrices Kp

i as follows:

(i) For the subsystem E1, we have

C1 =

[
21.8174 1.3860
1.3860 92.7029

]
P1 =

[
0.0459 −0.0007
−0.0007 0.0108

]
K1

1 =
[
0.1067 0.2151

]
K2

1 =
[
0.2983 0.0581

]
K3

1 =
[
0.3112 −0.0300

]
K4

1 =
[
0.3358 −0.0330

]
.

(ii) For the subsystem E2, we have

C2 =

[
18.5841 1.0680
1.0680 91.7758

]
P2 =

[
0.0538 −0.0006
−0.0006 0.0109

]
K1

2 =
[
0.0605 0.2203

]
K2

2 =
[
0.2944 0.0617

]
K3

2 =
[
0.3172 −0.0280

]
K4

2 =
[
0.3598 −0.0315

]
.

Therefore, we can see that the system of linear matrix inequalities (LMI.1), (LMI.2) and (LMI.3) of Theorem 5.1
has a feasible solution, which implies that the unstable malware-free equilibrium of the fractional network-based

SIRS epidemic model can be stabilized under the fuzzy state-feedback controller u(t) =
[
u1(t) u2(t)

]⊤
, where

the control ui(t) is defined by the formula (15).

6. Conclusions

This work proposes a controlled fractional network-based SIRS epidemic model with saturated treatment func-
tion and designs a fuzzy parallel distributed compensation (PDC) controller u(t) to study the malware infection

28

109



controlling on complex heterogeneous network. In order to get a better description of real-world scenario that the
number of infected individuals reach a saturation level and exceed the cure capacity, a saturated treatment function
is used instead of a linear ones. After that, we carry out a detailed study on epidemiological characteristic of the
proposed network-based epidemic model. The first epidemiological factor we concentrate on is the basic reproduc-
tion number R0, which can be analytically evaluate by using next-generation matrix method. Next, we use this
number as a threshold value to investigate the asymptotic stability of malware-free equilibrium and the presence
of endemic equilibrium on complex heterogeneous network. After that, we determine the condition for which the
backward bifurcation phenomena at R0 = 1 occurs. Finally, in order to deal with the stabilization problem of the
unstable malware-free equilibrium, we propose to use the approach of interconnected Takagi-Sugeno fuzzy systems
and give some necessary conditions in LMIs form to solve the desired stabilization problem. By using LMI Toolbox
to solve the obtained linear matrix inequalities, the proposed stabilization criteria can be conveniently used to
implement state-feedback controller u(t) and guarantees the asymptotic stability of malware-free equilibrium. A
further problem in regard to combining asymptotic stability with observability of the network-based SIRS epi-
demic model has not been considered in this work. In addition, due to the vagueness and incomplete of model’s
parameters in reality, there is an open question that how to establish the criteria for the stabilizability, reachability
or observability of the proposed epidemic model with uncertainties. We think that these problems should be of
considerably interest and can be done in our future studies.
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