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Abstract. Current adaptive-based speech synthesis techniques are based on two main streams: 1)

Fine-tuning the model using small amounts of adaptive data; 2) Conditionally training the entire

model through a speaker embedding of the target speaker. However, both of these methods require

adaptive data to appear during training, which makes the training cost to generate new voices quite

expensive. In addition, the traditional text to speech (TTS) model uses a simple loss function

to reproduce the acoustic features. However, this optimization is based on incorrect distribution

assumptions leading to noisy composite audio results. In this paper, we propose the Adapt-TTS

model that allows high-quality audio synthesis from a small adaptive sample without training to

solve these problems. The main contributions of the paper are: 1) The extracting mel-vector (EMV)

architecture allows for a better representation of speaker characteristics and speech style; 2) An

improved zero-shot model with a denoising diffusion model (mel-spectrogram denoiser) component

allows for new voice synthesis without training with better quality (less noise). The evaluation

results have proven the model’s effectiveness when only needing a single utterance (1-3 seconds) of

the reference speaker, the synthesis system gave high-quality synthesis results and achieved high

similarity.

Keywords. Zero-shot TTS; Multi-speaker; Text-to-speech; Diffusion models; Mel-spectrogram

denoiser; Extracting mel-vector; EMV, Adapt-TTS.

1. INTRODUCTION

Currently, speech synthesis techniques (TTS text-to-speech) based on neural networks
have achieved the same naturalness as humans and are widely applied in real life. However,
today’s most popular and advanced synthesis models, such as Tacotron2 [1], Fastspeech2 [2],
and VITS [3],... still require large amounts of data from a single speaker or multi-speaker. It
also requires a long time to retrain the entire model every time a new speaker is added. The
above TTS models can synthesize high quality with the voices in the training data or seen
in training progress. However, without retraining, synthesis quality remains a significant
challenge [4,5]. There is a great need for new speech learning applications with only a small
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amount of reference speaker data (target speaker), but still ensures that the synthesized voice
achieves similarity with the sample voice, so adaptive techniques were proposed to solve these
problems. Currently, two main adaptation techniques are popularly used: 1) Fine-tune all
or part of the layer with adaptive data based on a pre-trained model (which has been trained
with large amounts of data) [6]; 2) Use a vector to capture the representation of the speaker’s
characteristics with a small amount of adaptive sample [7,8]. These two methods give a good
synthesis quality and a high similarity of the synthesized voices to the target voice. However,
they require expensive computational resources, and besides, there are still two problems:
First, speakers with too small sample data (target voice only one sentence or few seconds)
are not adaptable, not good or not trainable; Second, to learn a new voice, it is still neces-
sary to fine-tune a sample of the target voice to update the model parameters and the seen
speaker training process for a long time (hours or even days). This leads to consuming com-
putational resources and time-consuming to generate new voices, limiting many possibilities
for practical application. A new approach called zero-shot is adopted to adopt a new voice
with just one utterance or seconds of the sample without additional training. This technique
allows the adaptation of the new voice without retraining; moreover, the data required for
training is tiny (just one sentence or a few seconds of target voice data) [5]. Zero-shots
in speech synthesis are techniques aimed at training a model that allows the generation of
new voices under the condition that these voices have never appeared during training or are
unknown during supervised learning (unseen speaker) [10]. These studies open up several
useful applications, such as smart speaker systems (with small computational resources) that
can tell stories or communicate with their voice, learn new voices on-site without retraining,
and flexible speaker voice-over systems are provided on-site. Zero-shot multi-speaker TTS
models typically use speaker embedding that can be easily adapted to the new speaker, al-
lowing them to generate a new speaker’s voice with much smaller data than other methods
adapted by fine-tuning. These models have shown promising results regarding synthesizer
quality and generalizability for new speakers. All in all, Zero-shot multi-speaker TTS is an
exciting and rapidly growing area and has the potential to significantly impact how TTS
systems are built and used in the future. The process of modeling speaker features in TTS
consists of 3 steps: 1) Extracting the features of the target speaker; 2) Using these features as
conditions for a synthetic TTS model, and 3) Generating the mel-spectrogram based on that
representation. In the first step, the zero-shot TTS model typically uses a speaker embed-
ding to represent the target speaker features best. Most of the research focuses on speaker
encoder enhancement. However, it is difficult to accurately extract speaker characteristics in
zero-shot conditions such as speaker characteristics, speaking style, and emotion. In steps 2
and 3, synthetic models such as non-autoregressive cannot produce diverse synthetic speech.
It is because the model is often optimized using a simple regression loss function (e.g. L1,
L2), and there is not any probabilistic model to reconstruct the acoustic features [11, 12].
The paper is structured into five main parts: The introduction presents an overview of TTS
in the conditions of very little sample data, no training, and low computational cost, thereby
posing the need for zero-shot adaptation; Related work presents related research on Zero-shot
in TTS, diffusion model, and style vector; The main part presents the Adapt-TTS model
with two improvements applying for Multi-speaker TTS zero-shot: 1) Propose Extracting
Mel-vector (EMV) architecture allows voice feature representation for better generalization.
This architecture has effectively learned speaker characteristics from meager target voice
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Figure 1: Basic speaking TTS multi-person zero-shot model

samples. 2) Propose a Mel-spectrogram denoiser with kernel architecture using the denois-
ing diffusion model for zero-shot Multi-speaker TTS model to improve synthesis quality and
denoising ability; Finally, the experiments are evaluated and concluded.

2. RELATED WORKS

2.1. Zero-shot multispeaker TTS

Zero-shot multi-speaker TTS was first proposed by Arik et al., [8]. The idea of using
a speaker encoder as a conditioning signal was further explored [4, 13], trying to close the
quality gap between the speakers seen in the training set and those not in the training set
(unseen) in the zero-shot Multi Speaker TTS model using embedding as extra information
(Fig. 1). This study proposed a speaker embedding that uses neural network-based LDEs
speaker embeddings to enhance the similarity and naturalness of voices and uses x-vectors
to increase the scalability of the speaker verification task. With the use of embedding parts
of the speaker, attention is given to encoding a more general speaking style instead of the
speaker’s audio [14]; [15] as well as methods that decode differently in the acoustic space such
as generative flow [16], further efforts have been made to close the quality gap between seen
speakers and unseen speakers. In addition, adapting Multi-speaker TTS models for voice
transcription with few target voices requires diversity (including high-quality voice plurals
and multiple speech attributes) of the speakers in the training data, and It is very important
to achieve high generalization on the unseen-speaker dataset[8]. Therefore, these are still
major challenges needed to be solved.
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Figure 2: Visual depiction of the Diffusion model’s reverse and diffusion process

2.2. Diffusion probabilistic models

The denoising diffusion probabilistic model (referred to as the denoising diffusion model)
has shown high efficiency in image and sound generation [17, 18]. The denoising diffusion
model is a Markov sequence that has been parameterized and trained using variable infer-
ence to generate matching patterns that resemble the original data after a finite time [17].
The transformations of this sequence are learned to reverse diffusion; the Markov series
gradually add noise to the data in the direction opposite to the sampling direction until
the signal is destroyed. When the diffusion includes a small amount of Gaussian noise, it
is sufficient to set the sampling sequence transformations to Gaussian conditional, allowing
for a particularly simple neural network parameterization. The diffusion model consists of
two opposite processes, as depicted in Fig. 2: 1) The diffusion process is a Markov series
with fixed parameters to convert complex data into an isotropic Gaussian distribution by
gradually adding Gaussian noises; 2) The reverse process is a Markov sequence implemented
by a neural network to learn how to recover the original data from repeated Gaussian white
noise. The goal consists of two things, again the distance between the forward-diffusing
noise xt and the reverse diffusing decoder xT , and argmax how to log-likelihood the max-
imum reverse diffusion probability between x0 based on the noise decoder. The diffusion
model is highly flexible and allows architecture with the same input and output sizes. That
is essential in applying the diffusion model in speech synthesis to achieve the highest quality
and likely-hook synthesized voice possible.

2.3. Style vector

An encoder is a component that encodes variable-length strings into fixed-dimensional
representation vectors. In the basic multi-speaker TTS model [2, 7, 19], in the speaker en-
coder, an essential component is the speaker embedding to represent each speaker’s voice
signal as a feature vector. These vectors do not carry the speaker’s features but carry
the speaker’s identity information. Adaptation-based TTS multi-speaker systems must use
speaker features to train and refine the adaptive model. In order to do that, speech pro-
cessing systems must first convert each variable-length audio clip into a fixed-length vector
representing the speaker’s identity, called speaker embedding, and real now cluster based
on these vectors. Speaker embedding is also widely used in speech-processing tasks, such
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as speaker recognition, speaker classification, speech tuning, and language synthesis [19–22].
Traditional methods often use the embedding module to extract a representative vector of
the speaker’s features. We can model the traditional method as the following formula

emb = Emb(Speaker ID). (1)

However, it can be seen that this simple technique cannot represent the characteristics of
each speaker (identity, gender, age, health) because it only uses speaker identifiers as input
for the module. Some studies suggest another representative vector that carries information
about the speaker’s speaking style: style vector. Such as a study [14] that introduced GST
(global style token) trained with unknown labels to learn how to model audio expressions
and thereby control the synthesis in various styles such as speed, utterance, and textual
independence. Sometimes the model shows a successful style transition. However, interleaved
training only guarantees that some possible combinations of style classes are seen during
training, resulting in a loss of representation of the speaker’s style. The study of [11] used
SALN (style-adaptive layer normalization) to align the gain and bias of the text input with
style extracted from a reference short audio. Thus, it is possible to describe in general the
style vector s representing the style of speaker X from the Speech X reference audio input
encoded by the style encoder as follows

s = Style encoder(Speech X). (2)

3. ADAPT-TTS

3.1. Overall architecture

The adapt-TTS architecture consists of the main components: The architecture of Adapt-
TTS consists of the following main components: EMV module to extract speaker features
and styles of speech into a feature vector. Phoneme encoder module to convert phoneme
sequences into phoneme hidden sequences. Then, the variance adapter will add duration,
pitch, and energy information to the hidden sequences. Based on the diffusion model kernel,
the mel-spectrogram denoiser will receive the hidden information from the previous steps to
decode the output into high-quality mel-spectrograms. Finally, the vocoder module converts
these mel-spectrograms into speech signals. The overall architecture is depicted in Fig. 3.
The detailed architecture and functionality of the proposed enhancement modules are shown
below.

3.2. Extracting mel-vector (EMV)

We propose a new module called “mel extraction vector” (EMV module), which can ex-
tract a fixed vector from the speaker’s mel-spectrogram to accurately represent the speaker’s
features as the speaker and speaking style. EMV is to take the reference voice X as input.
This block aims to extract an embedding stv vector containing the style and features of
speaker X

stv = EMV (Mel). (3)

In this module block, we use three main components, namely encoder feature, decoder fea-
ture, and embedding feature.
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Figure 3: Overall architecture of adapt-TTS

First, at the encoder feature module, the mel-spectrogram input is first fed to the fully
connected (FC) layer, and the Mish activation functions convert each frame of the mel-
spectrogram into the hidden sequence, which then passes through the two FC layers. The
purpose of the encoder feature block is to convert the input feature into an encoder feature.
Next, this vector will be passed through the decoder feature module. By using Conv1D
+ReLu with the residual result to capture the information sequence from the given speech,
this module aims to convert the decoder feature to the decoder feature. In addition, we
also integrate skip connection, which will use the valuable features of the previous blocks.
Finally, the decoder feature will be moved to the embedding feature module, which has a
self-attention module with redundant connectivity plus the affine layer to encode the genetic
information. We apply it at the frame level so that EMV can extract better style information
even with a short speech sample. Then we temporarily average self-attention output to get
a one-way style vector emb. Thus this module will generate a vector representing the Mel-
spectrogram, and this vector will add to the text-to-speech model. The representation vector
will drive the output of the TTS model and produce a synthetic voice similar to the input
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Figure 4: The detailed structure of the EMV module

vector. Architectural details of EMV are shown in Table 1 and Fig. 4 respectively.

3.3. Mel-spectrogram denoiser

The decoder block takes input from the hidden phoneme sequence through the variance
adapter to add variance information (e.g., duration, pitch, and energy) and then combines
it with the EMV vector (representing human features). Then, Mel-spectrogram-denoiser
module will take as input sequence xt, text c, and time step t to perform high-quality audio
denoising and synthesis based on the diffusion model. The inference process of the diffusion
model for multi-speaker TTS will optimize the objective function fθ(xt|t, c) to convert the
noise distributions into a mel-spectrogram distribution corresponding to the given text and
the model. It includes two main processes:

Diffusion process. First, the mel-spectrogram is gradually corrupted with Gaussian noise
and transformed into latent variables. This process is called the diffusion process. Assuming
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a sequence of variables x1,..., xT . with equal dimensions, where t = 0, 1, ..., T is the index
for diffusion time steps, the diffusion process transforms the mel-spectrogram x0 into Gaus-
sian noise xT through a chain of Markov transitions. Each transition step is defined by a
predetermined variance schedule β1,β2,..., βT . Specifically, each transformation is performed
using the Markov transition probability q(xt|xt−1, c), which is assumed to be independent
of the text c and is defined as follows

q(xt|xt−1, c) = N(xt,
√

1− βtxt−1, βtI). (4)

The entire diffusion process q(x1:T |x0, c) is a Markov process and can be analyzed as
follows

q(x1..., xT |x0, c) =
T∏
t=1

q(xt|xt−1). (5)

Reverse process. The reverse process for generating a mel-spectrogram is the opposite of
the diffusion process. Rather than introducing noise, the goal of the reverse process is to
recover a mel-spectrogram from Gaussian noise. This process is defined by the conditional
distribution pθ(x0:T−1|xT , c) and can be decomposed into multiple transitions based on the
Markov chain property

pθ(x0..., xT−1|xT , c) =

T∏
t=1

pθ(xt−1|xt, c). (6)

Using the reverse transitions pθ(xt−1|xt, c), the latent variables gradually reconstruct a
mel-spectrogram corresponding to the diffusion time-step with the text condition. Mel-
spectrogram denoiser thus learns a model distribution pθ(x0|c) via the reverse process.
Let q(x0|c) be the mel-spectrogram distribution. To achieve a good approximation of
q(x0|c), the reverse process aims to maximize the log-likelihood of the mel-spectrogram,
Elog q(x0|c[log pθ(x0|c)]. As pθ(x0|c) is intractable, we use the parameterization trick demon-
strated in [17] to calculate the variational lower bound of the log-likelihood in a closed form.
Set α = 1− βt and αt =

∏T
s=1 αs. The training objective of the mel-spectrogram denoiser is

as follows
minLθ = Ex0,ϵ,t

[
||ϵ− ϵθ(

√
αsx0 +

√
1− αsϵ, t, c||1)

]
, (7)

where t is uniformly taken from the entire diffusion time step. Mel-spectrogram denoiser only
requires the L1 loss function between the model output ϵθ(.) and Gaussian noise ϵ ∼ N(0, I),
without any auxiliary losses. In the inference phase, mel-spectrogram denoiser recovers a
mel-spectrogram from a latent variable by iteratively predicting the diffusing noise added
at each forward transition using ϵθ(xt, t, c) and then removing the corrupted portion in the
following manner

xt−1 =
1

√
αt

(xt −
1− αt√
1− αs

ϵθ(xt, t, c)) + δtzt, (8)

where zt ∼ N(0, I) and δt = η
√

1−αs−1

1−αs
βt. The scaling factor of the variance is represented

by the temperature term η. In mel-spectrogram denoiser, the diffusion time-step t is used
as input, allowing for shared parameters across all time-steps. This enables the iterative
sampling over all preset time steps, ultimately resulting in the distribution p(x0|c) for the
final mel-spectrogram.



ADAPT-TTS: HIGH-QUALITY ZERO-SHOT MULTI-SPEAKER TEXT-TO-SPEECH 167

Figure 5: Detailed architecture of the Mel-spectrogram denoiser block

Brief of training and inference

Training. Besides the sample reconstruction loss described above, to assess the quality of
the predicted output in terms of pitch, energy, and duration, the loss values of the variation
information are computed using the mean squared error (MSE) metric with respect to the
ground truth. Additionally, to evaluate the similarity of the predicted mel-spectrogram to
the actual audio, the loss is calculated using the mean absolute error (MAE) and structural
similarity index measure (SSIM), which provide a measure of audio fidelity. The final loss
value during Mel-spectrogram denoiser training includes the following parts

Lfinal = Lθ + LSSIM + Lduration + Lpitch + Lenergy. (9)

1. Lθ (sample reconstruction loss): MSE mean square error between predicted and target
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mel-spectrogram sample;
2. LSSIM (structural similarity index measure loss - SSIM): One minus the SSIM index
between the predicted and target mel-spectrogram sample;
3. Lduration, Lpitch, Lenergy (variance reconstructs loss): Mean squared error between duration
of syllables, pitch, and energy of prediction sample and target.

Inference: During inference, the mel-spectrogram denoiser predicts the input x0 without
noise and then re-adds the noise using the posterior distribution, thereby generating mel-
spectrogram planes with increasing details. Specifically, the denoising model fθ(xt, t, c) first
predicts xt, then xt−1 is sampled using the posterior distribution q(xt−1|xt, x0) given by xt
and predicts xt−1. Finally, a pre-trained vocoder converts the spectrogram plane generated
from x0 to a waveform.

4. EXPERIMENTS AND RESULTS

4.1. Experiments

Dataset. To evaluate the model, a labeled multi-speaker dataset of Vietnamese language
was utilized. The dataset comprised 54 speakers, with 26 male and 28 female voices. The
dataset also included both Northern and Southern dialects, with each speaker recording
approximately 500 utterances. To evaluate the quality of the synthesized sound generated
from the proposed models, we prepared 5 sets of data of Vietnamese: of which 4 sets were
synthesized from audio references with durations of 1 second, 3 seconds, and 5 seconds,
respectively, and 1 set includes the ground-truth audios for matching.

Evaluate results. We will use two models to synthesize: 1) Baseline model proposed
by studies [2], and 2) Adapt-TTS model. We use 30 listeners who are Vietnamese officials,
teachers, and students studying and working at universities in Vietnam to listen to and grade
the sounds provided through a web-based assessment application. We evaluate the integrated
system by combining the evaluation both by objective assessment method (Subjective using
quantitative indicators such as WER) and subjective assessment (Objective using qualitative
indicators) such as MOS/SIM).

Experiment 1: Assess the quality of speech synthesis MOS (mean opinion score) index eval-
uates audio or video quality based on human judgment. We conducted the MOS assessment
by asking a group of listeners and rating their satisfaction with the sound quality synthesized
by the models on a scale of 1 to 5. This scale includes 5 ratings as: 5: Excellent; 4: Good;
3: Medium; 2: Poor; 1: Bad. The results of the MOS are calculated by averaging the scores
of all the reviews. To ensure objectivity, we also mix ground-truth sounds to determine the
maximum scale for the speaker’s voice. We also use the WER(word-error-rate) index to
measure the percentage of misrecognized words in the synthetic audio word recognition text
compared to the ground-truth audio recognition text. This WER index provides additional
quality assessment information through the speech-to-text recognition capabilities of existing
ASR systems [23].

Experiment 2. Evaluate the similarity between the synthesized voice and the human voice:
We use the SIM (similarity) index to measure the similarity between the synthesized and
ground-truth audio of the target speaker. We ask listeners to listen and score the similarity
synthesized by the models and the ground truth. These assessments are through listening
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Table 1: MOS/WER composite quality assessment results of baseline and proposed models with

95% confidence intervals.

Times/Models
Baseline Adapt-TTS

MOS(↑) WER(↓) MOS(↑) WER(↓)
Groundtruth 4.53 1.35 4.53 1.35

1 second 2.05 8.78 2.89 3.38

3 seconds 2.16 7.77 3.29 3.14

5 seconds 2.18 6.76 3.31 3.04

to the corresponding pairs of sounds using the 4-scale similarity score based on the query
and category suggested in [24]. This scale includes 4(four) ratings: 4. Definitely the same;
3. Maybe the same; 2. Maybe different; 1. Definitely different.

4.2. Results

4.2.1. Quality

Table 2 shows that with only 3 seconds of adaptation audio from the reference speaker,
the Adapt-TTS model synthesized audio with a MOS score of 3.29 compared to 4.53 of the
human voice without requiring retraining. This score is higher than the Baseline model’s
score of 2.16. The WER score also shows that with only 1 second of reference speaker audio,
the system was able to synthesize audio with a WER of 3.38.

4.2.2. Similarity

Table 3 demonstrates that adapt-TTS achieved a SIM score of 2.22 compared to 3.9 of the
speaker’s voice with only 3 seconds of adaptation audio from the reference speaker. On the
other hand, the baseline model only obtained a SIM score of 1.24. Moreover, by comparing
the spectrogram in Fig. 6 with 3 seconds of adaptation samples, it can be seen that the
mel-spectrogram image (highlighted in the rectangular box) between the audio generated by
adapt-TTS and ground-truth has a significantly higher similarity than the audio produced
by the baseline model. Additionally, the audio generated by the baseline model is blurry
and contains a lot of noise.

Table 2: SIM similarity assessment results of baseline and proposed models with 95% confidence

intervals.

Duration/Model Baseline Adapt-TTS

Groundtruth 3.90 3.90

1 second 1.16 1.71

3 seconds 1.24 2.22

5 seconds 1.31 2.6

In order to gain a deeper understanding of the effectiveness of the adapt-TTS model,
we illustrate the EMV vectors through the visualization method by computing the distance
matrix between the data points of the synthesized audio and the human voice. Figure 7
presents the t-SNE [25] projection of EMV vectors obtained from unseen speakers in the



170 PHUONG PHAM NGOC et al.

Figure 6: Mel spectrogram of 3 audio: a) Ground truth b) Audio generated by adapt-TTS and c)

Audio generated by baseline model.

Vietnamese multi-speaker dataset; Specifically, we chose 10 speakers (5 male and 5 female).
Adapt-TTS shows an improved separation of the style vectors compared to the baseline
model. The t-SNE chart by the adapt-TTS model (Fig. 7 a) shows that the synthesized and
original sounds of the same speaker tend to cluster closely together. Gender characteristics
are also clearly clustered in 2 different regions.

5. CONCLUSION

The article proposes an architecture that allows synthesizing a new voice using zero-
shot speaker adaptation with only one utterance of the reference speaker without requiring
retraining. The proposed approach utilizes EMV for better feature and speaking style repre-
sentation and mel-spectrogram denoiser for synthesizing higher quality and less noisy speech.
The experiments demonstrate that a single 1-3 second sample of the reference speaker’s voice
is sufficient to synthesize a voice with a MOS of 3.3/4.5 and a similarity score of 2.2/3.9.
Although the sound quality produced by the proposed zero-shot multi-speaker TTS model
cannot match or replace traditionally trained models. However, it allows for quick learning
of new voices without retraining while maintaining acceptable sound quality and achieving
high similarity with the target voice. The adapt-TTS model works well at cloning speakers
with only a short sentence (several seconds), but if the sample data is increased significantly,
the quality and similarity of the voice do not change much. The adapt-TTS model proposed
in the article enables adaptive speech synthesis with the potential for diverse applications in
daily life.
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Figure 7: Modeling the spatial distribution of t-SNE between the synthesized voice of the
proposed model on the human voice by 10 speakers by a) Adapt-TTS model and b) Baseline
model.
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Training a multi-speaker Text-to-Speech (TTS) model requires multiple speakers’ voices
to generate an average speech model. However, the average speech synthesis model will
be distorted or averaged, resulting in low quality if the new speaker’s voice has too
little data to train. The existing methods require fine-tuning the model; otherwise,
the model will achieve low adaptive quality. However, for synthesis voice to achieve
high adaptive quality, at least thousands of fine-tuning steps are required. To solve
these issues, in this paper, we propose a Vietnamese multi-speaker TTS adaptive-based
technique that synthesizes high-quality speech and effectively adapts to new speakers,
with two main improvements: (1) propose an Extracting Mel-Vector (EMV) architec-
ture with three components, the Encoder–Decoder–Embedding Features, which enables
complete learning of speaker features with Mel-spectrograms as input for few-shot train-
ing and (2) a continuous-learning technique called “data-distributing” preserves the new
speaker’s characteristics after many training epochs. Our proposed model outperformed
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the baseline multi-speaker synthesis model and achieved a MOS score of 3.8/4.6 and
SIM of 2.6/4 with only 1 min of the target speaker’s voice.

Keywords: Speaker adaptation; multi-speaker text-to-speech; speaker embedding; EMV.

1. Introduction

End-to-end Text-to-Speech (TTS) models are becoming more and more popular
and dominant in terms of quality and simplified engineering implementation. The
end-to-end model is the recommended model for simplifying text analysis modules
and directly taking character strings or phonemes as input, simplifying audio fea-
tures using Mel-spectrogram, and allowing the direct generation of audio from the
input text. Some popular end-to-end state-of-the-art models such as Tacotron2,1

FastSpeech2,2 and VITS3 can synthesize voices close to human voices.
Training a multi-speaker TTS model from scratch is computationally expen-

sive, and adding new speakers to the dataset requires the model to be retrained.
Some neural network-based TTS models include speaker encoder modules to extract
hidden representations of speaker’s characteristics such as speaker characteristics
(physiological features such as identity, gender, age, and health) and speaking style
(psychological features such as individual and collective).4–6 A speaker encoder that
can extract the speaker embedding vector space from one or several desired speakers
is an essential component in a multi-speaker TTS system. This embedding vector
is used to customize the TTS output and generate new speeches from the target
speaker. The speaker encoder can be trained with the rest of the multi-speaker TTS
modules. The speaker encoder can also be pre-trained to generate embeddings to
train multi-speaker TTS on a multi-speaker dataset.7 Multi-speaker TTS systems
require considerable data to model the characteristics of the speakers during train-
ing. However, many personalized applications have limited data from the target
speaker, such as restoring the voices of great people and the voices of the deceased.

In addition, with rich-resource languages such as English, Japanese, and Chi-
nese, through the long development process, there are large and diverse databases.
In Vietnam, research on speech processing has existed since the early 20th century.
Up to now, a number of high-quality speech datasets have been widely published,
such as VOV (radio source), MICA VNSpeechCorpus, VAIS-1000, VLSP. However,
Vietnamese databases for speech synthesis research are still limited and lack high-
quality recorded datasets that exceed 10 h for TTS.8 Moreover, Vietnamese is a
complex language compared to other languages due to its monosyllabic nature and
tonal system, in which each syllable is associated with a specific tone.9 Gathering
such a significant amount of data is a costly, time-consuming process and is not
feasible for creating new speakers. So, the study of an adaptive method to solve
the problem of lack of data for Vietnamese speech synthesis is an indispensable
requirement. The adaptive technology allows synthesizing a new voice with only a
few reference samples, known as “few-shot TTS” adaptations. There are two main
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approach methods to deploy an adaptive few-shot TTS system: fine-tuning-based
and embedding-based adaptation.

With the fine-tuning-based adaptive approach, several studies have proposed
fine-tuning either all the parameters of the model or a part of them based on a
small target voice. Some proposals require several minutes of adaptive data and are
less attractive than the actual requirements. A traditional approach is fine-tuning
a part or whole model with a pre-trained model using a small dataset of target
speakers.10–12

With the embedding-based adaptive approach, several studies have proposed
specialized embedding methods to represent various speech features (e.g., speaking
styles and speaker identities) or switch to a variable-length embedding method to
preserve transient information.13–16 However, TTS adaptation techniques (in terms
of similarity and quality) show that speakers seen during training consistently give
better quality than speakers not seen during training.17

Furthermore, when training a multi-speaker TTS system, there will be a sit-
uation where when fine-tuning in serial to learn new speakers with small data,
the model will forget the speakers that have already been learned. Using speaker
embedding could not improve the quality compared to fine-tuning adaptation. So,
we need a data distribution technique to ensure that adaptive voices with little
data and the sample data are still fixed during training so that the model does
not forget speaker characteristics after many rounds of continuous training.18,19

Therefore, this paper proposes two solutions to improve the quality of few-shot
multi-speaker TTS adaptive based for Vietnamese: First, we propose an Extracting
Mel-Vector (EMV) architecture that allows learning speaker features better than
others. Speaker embedding baseline architecture; Second, we propose a new tech-
nique called “data-distributing” for continual-learning in TTS models and propose
to create various advantages such as expanding multi-speaker TTS systems and
reducing training costs, and improving the quality of an existing speaker’s voice
when only a small sample of the target speaker’s voice is needed.

2. Related Works

2.1. Text-to-speech

Currently, the statistical parameter-based speech synthesis model has completely
replaced the unit selection-based speech synthesis by its ability to adapt and con-
trol the speaker’s characteristics and speech style. The two most popular and
advanced TTS speech synthesis Deep Neural Network (DNN)-based architectures:
(1) Tacotron21 represents autoregressive architecture and (2) FastSpeech2/2s2 rep-
resents a nonautoregressive architecture. Autoregressive neural network-based TTS
models such as Tacotron2 generate Mel-spectrograms from text and then synthe-
size speech from generated Mel-spectrograms using a trained vocoder set private.
They often suffer from slow inference speed and persistence problems (skipping
and repeating words). In recent years, nonautoregressive TTS models have been
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designed to create Mel-spectrograms at high speed and avoid issues while achieving
high quality close to previous autoregressive models. Among those nonautoregres-
sive TTS methods, FastSpeech2 is one of the most successful. FastSpeech2 has two
ways to reduce the one-to-many mapping problem: first, to remove the distilla-
tion pipeline between teacher–student and to directly use the Mel-spectrogram of
ground truths as the training target, and second, to use the set of Mel-spectrograms
to train the model. Variance adaptor includes not only duration predictors but also
pitch and energy predictors. FastSpeech2 further simplifies the training process and
leads to a complete end-to-end system that directly generates waveforms from the
text without generating the Mel-spectrogram according to the acoustic, end-to-end
model, in the end, generates the audio waveform at the vocoder. However, for high-
quality synthetic sound, FastSpeech2 needs dozens of hours of labeled audio to train
a single speaker model, or hundreds of hours of labeled audio to train multi-speakers
model (approximately 30 min/speaker).

2.2. Speaker adaptation

When the TTS system can synthesize high-quality speech, the next most important
task is efficient speech synthesis to reduce the cost of speech synthesis, including
collecting and labeling training data. Where TTS adaptation using fewer data to
help low-resource languages is an exciting direction becoming the leading research
target. So, adaptive speech synthesis synthesizes arbitrary speech from any person
with a small amount of accurate sample data. The synthesized voice will have the
characteristic of the target voice with its voice characteristics and prosodic features.
Two main approach methods to deploy an adaptive TTS system are fine-tuning-
based and embedding-based. When fine-tuning, the model only changes the decoder
module’s parameters. The model can learn the whole speaker’s features from a small
amount of data after fine-tuning. The primary acoustic model of end-to-end TTS is
a formula for transforming text information into acoustic features. It demonstrated
that a common approach is fine-tuning the pre-trained multi-speaker acoustic model
with the target speaker’s corpus. However, with a fine-tuned traditional approach,
creating a new voice in a new language different from a pre-trained model still
requires a large amount of data (more than 5 h, which is difficult with low-resource
languages). Using too small amounts of data makes it easy to cause overfitting by
adapting directly to the end-to-end acoustic model. Previous work has proposed
a “multi-pass fine-tune” model to borrow an English pre-trained model and first
fine-tune with an intermediate Vietnamese pre-trained model, then second fine-tune
with an adaptive voice.20 The main acoustic features learned/transferred from the
English (large dataset) and Vietnamese (medium dataset) to generate a new voice
that only needs a small amount of adaptive data to model learning voice features of
the target speaker according to word pronunciation, the phoneme mapping model
between source and target linguistic symbols. The speaker embedding vector of the
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old speaker has been frozen and only lets the new speaker adapt its embedding to
the TTS model.

With the embedding-based adaptive approach, an embedded vector or an
embedded network encodes speaker features and speaker styles. During the multi-
speaker average model training, the embedding vector was used to distinguish acous-
tic features to identify speakers and speaking styles. When inferring, the vector
representation of the target speaker is used as an input to generate the adaptive
voice. Recent research on speaker embedding has put forth Gaussian Mixture Model
(GMM) and DNN-based models that aim to extract fixed-dimensional vectors. Sny-
der et al.21 introduced the x-vector, a feature obtained by directly training a DNN
model for speaker discrimination. In speaker verification systems, x-vectors are gen-
erally computed at the sentence level. Xie et al.22 proposed a Thin-ResNet model
that utilizes CNN and NetVLAD (or GhostVLAD) to generate fixed-length vectors
that surpass the performance of both i-vector and x-vector. The approach involves
learning to create frame-level speaker embedding and aggregate vectors over
time.

Several studies propose an alternative approach involving a style vector rep-
resenting the speaker’s speaking style. For instance, in a study,5 a global style
token (GST) was introduced, which was trained without labels to learn how to
model audio expressions and control synthesis in various styles, including speed,
utterance, and textual independence. This method occasionally demonstrates suc-
cessful style transitions. However, since interleaved training only ensures expo-
sure to some possible combinations of style classes during training, it may result
in a loss of representation of the speaker’s style. Arik et al.23 proposed speaker
encoding is based on training a separate model to directly infer a new speaker
embedding. Another study24 utilized Style-Adaptive Layer Normalization (SALN)
to adjust the gain and bias of the text input with style obtained from a refer-
ence short audio, enabling a general description of the style vector to represent the
speaking style of the speaker from the reference audio input encoded by the style
encoder.

2.3. Catastrophic forgetting

In addition, catastrophic forgetting (CF) has been a well-known problem in neural
networks for many years.25 In particular, the method of speech synthesis by direct
fine-tuning can cause a CF because the training data of the new speaker are too
small. Various continuous-learning methods (also known as continuous learning)
address this problem from different perspectives, such as (1) experience replay or
adjusting the weights of the network and class-incremental learning26; (2) introduce
regularization-based new loss functions to distill previous knowledge or penalize
important parameter updates27; (3) effectively reuse different speakers’ knowledge
while keeping privacy.28,29
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3. Propose Multi-Speaker Text-to-Speech Adaptive-Base

This section will present a proposed model of multi-speaker TTS adaptive-base
through two main improvements: EMV vectors that allow learning to represent
speaker features and “data-distributing” training technique to ensure the adaptive
data always appear during training.

3.1. Extracting mel-vector

The encoder is a component that allows the encoding of variable-length strings
into fixed-dimensional representation vectors. In a baseline multi-speaker TTS
model,2,30,31 in the speaker encoder, a critical component is the speaker embedding,
representing the speaker’s voice signal as a feature vector. Adaptation-based multi-
speaker synthesis systems must use speaker features to train and tune the adaptive
model. To do that, speech processing systems must first transform each variable-
length audio clip into a fixed-length vector representing the speaker’s identity, called
speaker embedding, and perform clustering based on these vectors. Speaker embed-
ding is also widely used in speech processing tasks such as speaker identity, speaker
diarization, speech adaptation, and language synthesis.30,32–34 Traditional methods
often use an embedding module to extract a representative vector. We can model
the traditional method as the following formula. Multi-speaker speech synthesis
system using baseline speaker embedding, as depicted in Fig. 1.

emb = Emb(Speaker ID).

Nonetheless, this basic method cannot capture the unique characteristics of
each speaker, such as their identity, gender, age, and health, as it solely relies on
speaker identifiers as input. Thus, we propose a new module Mel-Vector Extraction

Fig. 1. Architectural diagram of a baseline multi-speaker speech synthesis system using baseline
speaker embedding.
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Fig. 2. (a) Architectural diagram of a Vietnamese multi-speaker TTS adaptive-based model with
the EMV module and (b) detailed structure of the EMV module.

(EMV module), based on the Mel-style encoder original architecture that modified
to efficiently extract a fixed vector from a Mel-spectrogram,24 as depicted in Fig. 2.

emb = EMV(Mel).

More specifically, in this module, we use three components (Encoder Feature,
Decoder Feature, and Embedding Feature). The first module, Encoder Feature,
takes the Mel-spectrogram (Mel) input and passes it through a fully connected (FC)
layer with Mish activation functions to convert each frame into a hidden sequence.
This sequence then goes through two more FC layers to create the Encoder Fea-
ture, which is the module’s goal. The resulting vector is then passed to the Decoder
Feature module, which utilizes Conv1D+ReLu and residual connections to capture
information from the speech and convert it to the Decoder Feature. This module
also incorporates skip connections to retain valuable features from previous blocks.
Finally, the Decoder Feature output goes through the Embedding Feature module,
which contains a self-attention module with redundant connectivity and an affine
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Table 1. EMV architecture.

Layer Input × Output

Mel T × 80
FC +Mish T × 128
FC +Mish T × 128
ConV1D + ReLu 128 × T (transpose)
ConV1D + ReLu 128 × T
Self-attention T × 128 (transpose)
FC layer 1 × 128

layer to encode genetic information. This module operates at the frame level, allow-
ing for the extraction of better style information from short speech samples. The
self-attention output is temporarily averaged to generate a style vector, which is
added to the TTS model. This vector drives the TTS model’s output and produces
a synthetic voice similar to the input vector. The EMV’s architectural details are
illustrated in Table 1 and Fig. 2.

3.2. Data distributing

In the speech synthesis training phases, if we choose batch size= 32, that is, for
one iteration, we will randomly give 32 audio clips of multiple speakers running
forward in the neural network. Then, feed another 32 random audio samples, with-
out including the previous audio samples, into the network and continue until there
are no more audio samples in the training dataset. Finally, finish a training epoch.
However, choosing a random audio sample to train multiple speakers will create a
loss of control when the speakers’ data are of different sizes. There will be a speaker
that dominates in terms of speaking duration and a large number of unique sylla-
bles, but also a speaker with a low speaking duration and a small number of unique
syllables. This will have the advantage that voices with a few samples will learn
pronunciations from speakers with extensive data. However, the problem of CF in
the neural network will make the synthesis model poor for speakers with small data
(no longer like the sample voice and poor quality). With a new speaker with only
a few minutes of sample data, the aggregate quality is poor (in terms of similarity
and quality) and the model will be biased learning data with many samples. To
overcome that problem, we use a training technique called “data-distributing” to
ensure that the batch size always keeps a fixed amount of audio of the adaptive
voice for each training session. That will ensure the adaptive voice will not forget
the characteristic parameters after each training epoch. With a large number of
speakers in a multi-speaker dataset or large batch size, the data-distributing tech-
nique will not change, processing will take the audios of each speaker in turn into
batches and attach it with a fixed batch containing adaptive audio to train. The
process repeats until all the audios of all speakers exist in the dataset for training.
An example is shown in Fig. 3, when training with batch size =32 of 4 speakers,
which includes 1 (one) voice to adapt. We will always keep 8 (eight) audios from
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Fig. 3. Batch size-distributing training with batch size=32 of 4 speakers, which includes 1 adap-
tive voice (audio samples kept in the first batch) and 3 speakers.

all the audio of the adaptive voice in the first batch and choose 24 random audios
from the other speakers in the remaining batches.

4. Experiments and Results

4.1. Experiments

To evaluate the multi-speaker TTS systems, we use a state-of-the-art multi-speaker
speech synthesis network as FastSpeech22 and HifiGAN vocoder as baseline models,
as depicted in Fig. 1. The FastSpeech2 architecture consists of main parts: (1)
The Phoneme Encoder converts the phoneme embedding sequence into the hidden
phoneme sequence; (2) The variance adaptor aims to add variance information
such as duration, pitch, and energy to the hidden phoneme sequence; (3) The mel-
spectrogram decoder converts the adapted hidden sequence into mel-spectrogram
sequence in parallel; (4) Vocoder transforms from mel-spectrogram to waveform. A
Montreal Forced Alignment (MFA) tool is used to extract the Vietnamese phoneme
duration.35 A baseline speaker embedding takes speaker IDs as input to encode
the corresponding speaker into speaker feature vectors. The duration, pitch, and
energy predictor are optimized with a mean square error (MSE) loss function to
minimize the model’s output with ground truth. In the multi-speaker TTS adaptive-
based model as depicted in Fig. 4, we will replace baseline speaker embedding with
an EMV module to encode speaker features directly from the mel-spectrogram;
the data-distributing training technique is also used to keep the adaptive speech
characteristic parameters. We conduct two experiments to evaluate the performance
of the models for Vietnamese:
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Fig. 4. t-SNE speaker style vector visualization of human voices and synthesis voices (using
EMV).

Datasets: A labeled multi-speaker Vietnamese dataset was used to evaluate the
model: 54 speakers in total, including 26 male voices, 28 female voices, and
Northern–Southern dialect, with each speaker reading about 500 utterances. The
adaptation data were divided into four groups (1, 2, 4, and 16 min, respectively)
to train the few-shot models.

Experiment 1: Evaluate the quality of the synthesized sound generated by the
baseline multi-speaker TTS model and the multi-speaker TTS adaptive-based
model. To estimate the minimum amount of audio for training the adaptive-based
model, 16 min is not required to evaluate. Groundtruth audio was also added to
evaluate to ensure objectivity. The evaluation results are shown in Table 2.

Table 2. Quality assessment table between baseline multi-s-
peaker TTS model (using baseline speaker embedding) and mul-
ti-speaker TTS adaptive-based model (using EMV module and
data-distributing technique).

Times/models Baseline multi-speaker Multi-speaker TTS
TTS model adaptive-based model

MOS(↑) WER(↓) MOS(↑) WER(↓)
Groundtruth 4.60 — 4.60 —
1 min 3.39 8.40 3.81 5.00
2 min 3.52 7.28 3.87 2.75
4 min 3.59 6.16 4.00 2.00
16 min 3.61 5.60 — 1.25
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Mean opinion score (MOS) scale is used to evaluate the quality of voice gener-
ated by the system. The sound synthesized from the baseline multi-speaker TTS
model and multi-speaker TTS adaptive-based model will be evaluated by 26 lis-
teners with 95% confidence intervals. Each listener will listen to a set of 120 audio
mixed between the ground truth and the audio generated by the baseline and adap-
tive model. The listener will have five rating options for each audio: (1) Bad; (2)
Poor; (3) Fair; (4) Good; (5) Excellent. In addition, we also use Word Error Rate
(WER), which validates the intelligibility of the generated speech. We use a pre-
trained Wave2vec Automatic Speech Recognition (ASR) model to calculate the
WER.36 Neither Mel-Cepstral Distortion (MCD) nor WER is the absolute metric
for assessing voice quality, so we only use them for relative comparisons.

Experiment 2: Assess the similarity of the synthesized audio generated by the
baseline multi-speaker TTS model and the multi-speaker TTS adaptive-based
model against the ground truth with only 1 min of adaptive data. Mel-spectrogram
analysis of the synthesized audio is compared to groundtruth audio to see the dif-
ference between the samples. The evaluation results are shown in Table 3.

MCD is used to measure how different two sequences of Mel-cepstral are for
evaluating speaker adaptation performance.37 The smaller the MCD, the closer the
synthetic voice is to natural speech reproduction. The SIM (Similarity) index is also
used to compare the similarity of synthesized speech and ground truth. 26 listeners
have four options to evaluate each audio pair with 95% confidence intervals: (1)
definitely different; (2) maybe different; (3) maybe the same; (4) definitely the same.
90 audio pairs are used for evaluation (randomly mixed between audios generated
by adaptive models, baseline models, and groundtruth audios).

4.2. Results

We assess the performance of EMV on TTS synthesis tasks with limited data in
this section. Access to the audio samples is provided at http://demo.aimed.edu.vn.

4.2.1. Quality

Table 2 shows that, with only 1 min data of target speaker, the multi-speaker
TTS adaptive-based model synthesized sounds with a MOS score of 3.81 compared

Table 3. Speaker similarity of baseline multi-speaker TTS
model and multi-speaker TTS adaptive-based model com-
pared to ground truth with only 1 min of adaptive data.

Experiment — Model MCD SIM
(1 min adaptive data)

Groundtruth — 4.0
Baseline multi-speaker TTS model 7.36 1.96
Multi-speaker TTS adaptive-based model 6.54 2.60
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to a score of 4.6 for the human voice. That score is much higher than the 3.61
MOS generated from the baseline multi-speaker TTS model (using 16 min of target
voice). The WER scores also show that the multi-speaker TTS adaptive-based
model synthesizes voices better than the baseline multi-speaker TTS model.

4.2.2. Similarity

Table 3 shows that, with just 1 min of target voice data, the adaptive-based multi-
speaker TTS model has a SIM similarity score of 2.60 compared to 4.0 for the human
voice. This score is much higher than the 1.96 SIM points of the baseline multi-
speaker TTS model (using 1 min of target voice). The MCD score of the adaptive-
based multi-speaker TTS model also decreased by more than 10% compared to the
baseline model.

Visualize style vectors to understand better the EMV vector’s effectiveness in
encoding individual speakers’ styles. In Fig. 5, we illustrate the t-SNE38 projec-
tion of the style vectors from the speakers of the human voice and the synthetic
voice, respectively. Using 10-speaker voices (five male and five female), we can see
that the EMV system models speaker features very well when representing the sim-
ilarity between human and synthetic voices through clearly and closely clustered
performance points in each area separately. The speakers are almost clearly gender-
segregated in the t-SNE visualization, with all female speakers appearing on the
right and all male speakers appearing on the left. The synthesizers and ground
truth of each speaker are relatively close to each other, indicating that the speaker
encoder has learned to represent the speaker’s space properly.

In addition, Fig. 5, depicts the mel-spectrogram of the voice synthesized from the
baseline multi-speaker TTS model, the multi-speaker TTS adaptive-based model
and voice groundtruth models. It can be seen that, with only 1 min of adaptive

Fig. 5. Compare the Mel-spectrogram of the (a) groundtruth audio, (b) the audio generated from
the adaptive model, and (c) the audio generated from the baseline model with 1 min-sample of
target speech.
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data, the wave spectrum is quite similar to the groundtruth spectrum and utterly
different from the sound wave spectrum generated from the multi-speaker TTS
baseline model. Compare the Mel-spectrogram of the (a) groundtruth audio, (b)
the audio generated from the adaptive model, and (c) the audio generated from the
baseline model with 1 min-sample of target speech.

5. Conclusions

This paper proposes an adaptive model to improve the quality of the Vietnamese
multi-speaker TTS system with two improvements: the EMV module and the “data-
distributing” training technique. The proposed model has shown superior perfor-
mance over the baseline multi-speaker TTS model, which uses traditional speaker
embedding. Experimentally, with only 1 min, the proposed model achieved high
similarity and good speech quality compared to the groundtruth voice. With only
1 min of adaptive data, the adaptive-based multi-speaker TTS model achieved 3.8
MOS points, and this score is equivalent to the MOS score using 16 min of adaptive
data based on the multi-pass fine-tune technique that we presented in report.20 It
demonstrates that the EMV module has brought full speaker features, is suitable
for few-shot training models, and has the potential to show the hidden features
of unseen-speaker in few-shot TTS systems. In the future, we will evaluate the
EMV module to enhance the zero-shot TTS adaptive-based system with data not
included in training progress (unseen-speaker).
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ABSTRACT

One of the main goals of text-to-speech adaptation techniques
is to produce a model that can generate good quality audio
given a small amount of training data. In fact, TTS systems
for rich-resource languages have good quality because of a
large amount of data, but training models with small datasets
(or low-resources) is not an easy task, which often produces
low-quality sounds. One of the approaches to overcome the
data limitation is fine-tuning. However, we still need a pre-
trained model which learns from large amount of data in
advance. The paper presents two contributions: (1) a study
on the amounts of data needed for a traditional fine-tuning
method for Vietnamese, where we change the data and run
the training for a few more iterations; (2) we present a new
fine-tuning pipeline which allows us to borrow a pre-trained
model from English and adapt it to any Vietnamese voices
with a very small amount of data while still maintaining a
good speech synthetic sound. Our experiments show that
with only 4 minutes of data, we can synthesize a new voice
with a good similarity score, and with 16 minutes of data, the
model can generate audio with a 3.8 MOS score.

Index Terms— Speaker adaptation, Multi-pass fine-tune,
TTS adaptation, Vietnamese TTS corpus

1. INTRODUCTION

Text-to-speech (TTS) based on neural network has thrived and
achieved the quality of synthesis as good as human voice. This
is because neural network-based speech synthesis techniques
have developed strongly and many research works focused on
different aspects of neural network-based TTS [1, 2, 3, 4, 5, 6,
7]. Neural network based TTS can be grouped into two cate-
gories: autoregression and non-autoregression with different
advantages and disadvantages [8]. Autoregressive TTS mod-
els (Tacotron[3], Tacotron2 [4], Transformer TTS [6]) gener-
ate Mel-spectrogram autoregressively. These models achieved
high synthesis quality but slow inferring speed (especially

Thanks to VAIS .,JSC for funding.

long sentences) and robustness synthesis voice (mispronounc-
ing, skipping, or repeating words). Non-autoregressive TTS
models (FastSpeech[7], Flow-TTS[9], GlowTTS[10]) are de-
signed to reduce failure cases of synthesis issues. They allow
to generate Mel-spectrogram at high speed and avoid robust-
ness issues by generating sequences in parallel without ex-
plicitly depending on the previous elements, which can sig-
nificant speed up the inference process. Recently, Forward-
Tacotron has shown improvement in terms of acceleration of
the inference phase, by taking advantage of Tacotron and Fast-
speech. The ForwardTacotron modifies the Tacotron to gener-
ate speech in a single forward pass and use a duration predic-
tor to align text and generate mel spectrograms. But there are
still many challenges in synthesizing new voices with small
amounts of data to suit with low-resource languages [11]. To
address this, the widely accepted efficient low data adaptation
techniques are proposed in the literature [12]. This is how to
use the minimum amount of target voice speech data (seen
speaker adaptive data) to learn acoustic and prosody features
to synthesize into a new voice with maximal similarity but
still ensure the quality [13, 14, 15, 16, 17, 18]. There are many
studies on speech synthesis with rich-resource languages such
as English and Chinese that allow synthesis of new voice with
small amount of data based on adaptive techniques. However,
no study has evaluated exact number of minimum data sam-
ples to synthesize a new voice for Vietnamese. In addition,
Vietnamese is a low-resource language, with almost no high-
quality recorded dataset over 10 hours [19]. Meanwhile, train-
ing the TTS model (e.g. Tacotron2, FastSpeech2) requires at
least 15 hours of Vietnamese high quality data (recorded in
the studio). Collecting such a large amount of data is expen-
sive, time consuming and impossible to include new speakers.
Therefore, it is necessary to have a strategy to self-build TTS
datasets from free quality recording sources. However, these
sources are often not fully transcribed or properly labeled,
which is a major challenge in the development of TTS cor-
pus. This raises another challenge in the adaptation strategy,
which is data adaptation on untranscribed data [20, 21, 22].
Previous works [23] have investigated the possibility to adapt
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Figure 1: Building dataset strategy for TTS baseline model

a general TTS model to emotional TTS by fine-tuning a neu-
tral TTS model with a small amount of emotional dataset. Al-
though using the same English language, the adaptive dataset
needs to be quite large (40 minutes). Or the study [24] demon-
strated that using Tacotron2 for data efficient cross-lingual
speaker adaptation and can transfer an existing TTS model
to a new speaker with the same or different language using
20 minutes of data. However, by applying traditional fine-
tuning, the results have low quality and low similarity. This
paper presents two main contributions:
- A study on the amount of data needed for a traditional fine-
tuning method for Vietnamese and a low-cost method to build
a TTS baseline dataset from untranscribed data by using ASR
models for transcribing speech data and using labeled data
pairs for speech adaptation.
- A Vietnamese speaker adaptation method to synthesize new
voice with small adaptation data by applying simple changes
to Taocotron2 model to multi-pass fine-tuning.

2. DATA PROCESSING

We built two datasets: 1. Dataset to train the TTS baseline
model, this is the large Vietnamese data of single speaker; 2.
The adaptation dataset is divided into several sub-datasets of
various sizes to evaluate the quality of the adaptive system.

2.1. Building Vietnamese dataset for TTS baseline

Collecting data to train the TTS baseline model using tradi-
tional methods is time-consuming and costly (selecting text,
selecting speaker, recording...)[25]. However, this is an im-
possible task when we want to quickly build new voices on
demand (because the speaker does not have enough time to
record). The data collection strategy depicted in Figure 1 is as
follows:
- Collect raw audio: From pre-recorded audio sources with
standard quality and clear sound recorded in a studio with a
minimum of 20 hours recording. The source of the sound we
get is from a long story reading or the voice of an announcer
or an MC on TV or radio.
- Convert audio to text and segmentation: We use a Viet-
namese ASR system to convert raw audio to text by cutting
the audio files into segments with a length of 3-10 seconds
(depending on the pause of silence) and converting to text
corresponding to each segment. Audio tracks with noise or
unclear pronunciation are automatically removed. Only audio

segments with clear text are retained (choose ASR confidence
above 95%)[26].
- Select text sentences and normalize audio: We filter the
recognized text sentences to keep the smallest set of cover
sentences but contain the most number of syllables in Viet-
namese. Only keep the audio set about 15 hours in size. This
size covers quite a lot of syllables and it is efficient enough
in order to create the synthesized voice for Vietnamese. Be-
fore training, it is necessary to normalize audio to .wav file
format; sample rate is 20500 Hz; mono channels. To reduce
noise, pre-training audio is trimmed with silence at the start
and end of each file, then reduced by 50% in volume.

2.2. Building experimental Vietnamese dataset for TTS
adaptation

To build small datasets to assess adaptive quality, we firstly
divided the dataset into small sets and conducted a prelim-
inary evaluation, then filtered and kept only representative
datasets. We kept and divided the target speakers into sub-
datasets with various sizes: 50, 200, 800 and 4500 sentences
(corresponding to 4, 16, 60 minutes and 5 hours). From the
target speaker’s dataset, we adopted text selection based on
greedy search to find the optimal sentences that have the best
phonemic coverage [27].

2.3. Building phoneme level for Vietnamese

Phonologically, the Vietnamese language is monosyllabic.
While there are around 19.000 pronounceable syllables in
Vietnamese, only approximately 7000 syllables (with and
without tone) are usually used in daily conversations and
newspapers [28]. Each Vietnamese syllable can be repre-
sented by three components which are consonant, vowel, and
tone. In addition, the tone is split into 6 units based on pitch,
length, melody, intensity, and phonation. In our research,
there are 30 consonants and 15 vowels, and 6 tones. When
we combined vowels with tones in order to represent the
intonations of vowels, and as a result, we had a total of 90
different intonations of vowels. This means that we had 120
phonemes (30 consonants and 90 intonations of vowels) to
express all Vietnamese syllables. For example, "trường học"
(school) could split into two syllables "trường" and "học" like
a form of collocation in English, and each syllable could be
represented by the following phonemes shown in Table 1.
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Table 1. Mapping Vietnamese syllables to phonemes
Syllable Phoneme
trường

>
tC 1@-1 NZ

học h O-5 kpz

3. MULTI-PASS FINE-TUNE FOR TTS ADAPTATION

Transfer learning is a typical approach to quickly learning
parameters from pre-trained models. Transfer learning is
used when your dataset has too little data to train a full-scale
model from scratch. In speech synthesis, fewer data can be
accommodated by fine-tuning in the two smaller sub-spaces,
and the synthesized speech is more natural and similar. For
TTS, previous works have concentrated on transfer learn-
ing and meta-learning methods for adapting new speakers
[29, 30, 31]. A traditional approach is fine-tuning of a part or
whole model with a pre-trained model using a small dataset
of target speakers [23, 24]. When fine-tuning, the model only
changes the decoder module’s parameters. The model can
learn the whole speaker’s features from a small amount of
data after fine-tuning.
The basic acoustic model of end-to-end TTS is a formula
for transforming text information into acoustic features, and
it was demonstrated that a common approach is to fine-tune
the pre-trained multi-speaker acoustic model with the target
speaker’s corpus using Tacotron2. The method of which is
shown on the left of Figure 2 [32]. However, with a fine-
tune traditional approach, to create a new voice in a new
language different from a pre-trained model still requires a
large amount of data (≥ 5 hours, which is difficult with low-
resource languages). If we use too small amounts of data, it is
easy to cause overfitting by adapting directly on the end-to-
end acoustic model. To solve these issues, we propose a model
to borrow an English pre-trained model and 1st fine-tune with
an intermediate Vietnamese pre-trained model, then 2nd fine-
tune with an adaptive voice. We refer to it as the ”multi-pass
fine-tune” method, and the same is shown in the diagram on
the right of Figure 2, which requires only a small sample to
adapt a new voice. Because the main acoustic features have
been learned/transferred from the English (large dataset) and
Vietnamese (medium dataset), to generate a new voice, we
only need a small amount of adaptive data to model learning
voice features of the target speaker. Transfer learning is also
effectively applied to cross-lingual learning for low-resource
languages, the target language and the source language must
be different. The phoneme mapping model between source
and target linguistic symbols according to word pronuncia-
tion. The speaker embedding vector of the old speaker has
been frozen and only let the new speaker adapt their em-
bedding to the TTS model. Thus, this multi-pass fine-tune
technique also allows transfer learning for a new language.

4. EXPERIMENTAL SETUP

4.1. Dataset

To evaluate the minimum size and number of fine-tuning lay-
ers to create a new voice effectively, we use three types of
datasets:
- English dataset : Using LSpeech-1.1 corpora, this is a public
domain speech dataset consisting of 13,100 short audio clips,
read by a single female speaker. Each clip is provided with a
transcription. Clips vary in length from 1 to 10 seconds and
have a total length of approximately 24 hours.
- Intermediate Vietnamese dataset: Using intermediate Viet-
namese dataset built from Section 2.1. This dataset consists
15,125 short audio clips of a single speaker reading TV news
with a male voice dataset. Clips vary in length from 1 to 10
seconds and have a total length of approximately 15 hours.
- Adaptation datasets: First, we use the techniques described
in Section 2.1 to build an adaptive dataset of 5 hours of the
female voice (corresponding to 4,544 sentences) to train the
model from scratch. Then we split the dataset into 3 small
sets with the number of sentences is 50, 200, 800 respectively
(duration corresponding to 4, 16 and 60 minutes).

4.2. Experimental Setup

To evaluate the TTS system, we used Tacotron2 network and
Waveglow vocoder. The Tacotron2 architecture consists of
two distinct parts: 1. Spectrogram Prediction Network is used
to convert text strings to mel-spectrograms in the frequency
domain; 2. Vocoder - Transforms from mel-spectrogram
to waveform. The architecture of Spectrogram Prediction
Network is quite simple, including Encoder and Decoder
connected by Location Sensitive Attention. The input of Viet-
namese speech synthesis model uses phoneme level instead of
character level[33]. An attention network consumed the en-
coder output, which summarized the entire encoded sequence
as fixed-length context. From the encoded input sequence,
the decoder predicts a mel-spectrogram. The mean squared
error (MSE) loss function was utilized to minimize the output
of the model with ground trust. Train the model with a warm-
start from pre-trained models corresponding to the following
experiments:
Experiment 1. Determine the minimum amount of Viet-
namese data to train the Tacotron2 model from scratch and
traditional fine-tune. The evaluation results are shown in Ta-
ble 2:
- Column 2: Training model directly from scratch with adap-
tive data (without pre-trained model).
- Column 3: Training model from English pre-trained model
with adaptive data (Pre-trained model using LJspeech 1.1
dataset).
Experiment 2. Evaluate the multi-pass fine-tune speaker
adaptation model by training model from intermediate Viet-
namese pre-trained model (which has been trained by fine-
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Figure 2: Speaker Adaptation a new voice with multi-pass fine-tune

Table 2. Multi-pass fine-tune and data-driven adaptive quality statistics table

Time From scratch
(VN corpora)

English pre-trained
+ Adaptive data

Intermediate VN pre-trained
+ Adaptive data

16 mins 1.29 1.33 3.78
60 mins 1.31 2.68 3.87
5 hours 2.66 N/A N/A

tuning from the English pre-trained model). Advantages of
adaptive training to create a new voice from adaptive data
with a multi-pass fine-tune technique. The adaptation sample
size varied from 16 minutes to 1 hour to assess the adaptation
quality. The evaluation results are shown in columns 4 of
Table 2.
Experiment 3. Evaluate the similarity between the Ground-
truth voice and the adaptive voice of the traditional fine-tune
model and the multi-pass fine-tune model with only 4 minutes
of adaptive data. The evaluation results are shown in columns
2 and 3 of Table 3.

5. RESULT

5.1. Quality of traditional fine-tune model

We use the MOS scale to evaluate the quality of voice gen-
erated by the system. The Vietnamese speech synthesis sys-
tem was evaluated by two groups of 23 listeners. Each listener
will hear a set of 120 audio sentences that have been mixed
between Groundtruth audios and audios generated from Tra-
ditional fine-tune, multi-pass fine-tune models and train from
scratch models. The listeners will have five (5) options: 1.
Bad; 2. Poor; 3. Fair; 4. Good; 5. Excellent, where 1 is the
lowest perceived quality and 5 is the highest perceived qual-
ity. In the columns 2 and 3 of Table 2, we compare the sound
quality (MOS) between the training model from scratch and
the traditional fine-tune model:

- If we train Vietnamese dataset (VN corpora) from scratch,
with 5 hours of the dataset, quality speech is still very poor
(MOS=2.66). If we train for less than 1 hour, we will not be
able to hear anything.
- If fine-tuned from an English pre-trained model with 1 hour
of Vietnamese adaptation data, the quality will be as good as
training from scratch of 5 hours of Vietnamese dataset, but
the voice quality is still poor (MOS=2.68).

5.2. Quality of multi-pass fine-tune model

In the columns 4 of Table 2, based on the English pre-trained
model, if fine-tune from intermediate Vietnamese dataset to
small adaptive dataset, then only needs 16 minutes (200 sen-
tences), the voice quality is quite good with MOS score of
3.78/4.69 of the human voice.

5.3. Similarity

We use Mel-Cepstral Distortion (MCD) to measure how dif-
ferent two sequences of Mel-cepstral are for evaluating voice
conversion performance [34]. The smaller the MCD between
synthesis and natural Mel cepstral sequences, the closer the
synthesized speech is to reproducing natural speech.
We also use SIM (similarity of the voices) to evaluate sim-
ilarity objectively. 11 professional listeners evaluate the
similarity of 90 pairs of audio sentences (mixed between
Groundtruth audios and audios generated by traditional fine-
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Figure 3: Speaker similarity of a adapted voice and Groundtruth with only 4 minutes of adaptive data

Table 3. Speaker similarity of tradition fine-tune and multi-
pass fine-tune model compare to Groundtruth with only 4
minutes of adaptive data

Experiment - Model
(4 mins adaptive data) MCD SIM

Groundtruth - 3.99
Fine-tune trandition 10.65 1.13
Multi-pass fine-tune 7.94 2.87

tune and multi-pass fine-tune models). The listeners have
four (4) options to give a score: 4. Definitely the same; 3.
Maybe the same; 2. Maybe different; 1. Definitely different.
The highest score is 3.99. The higher the score, the more
significant, the more similarity between the synthetic voice
and the Groundtruth.
Table 3 shows that multi-pass fine-tune creates new voices
with a much lower MCD than traditional-fine-tune (reduced
by 2.74). Also, in the same table, the results of Experiment
3 have shown that, with only 4 minutes of adaptive data, the
multi-pass fine-tune model produced a synthesized voice with
a much higher similarity than that of a synthetic voice from
the traditional-fine-tune method (2.87/3.99 of Groundtruth).
Figure 3, Depicts the Mel-spectrogram of synthesized voice
and the Groundtruth.
Reference utterance in Vietnamese: "Đại học Thái Nguyên
đã tổ chức hội thảo phương pháp giảng dạy hòa nhập và tích
cực".
Reference utterance in English: "Thai Nguyen University
organized a workshop on inclusive and active teaching meth-
ods".
With only 4 minutes of adaptive data (corresponding to 50
sentences), the adapted voices showed similar of phonemic
durations.

6. CONCLUSION AND FUTURE WORKS

We have demonstrated that if using traditional fine-tuning
techniques, 1 hour of Vietnamese adaptive data is not enough

to synthesize new voices; it requires a minimum of 3 hours.
We also proposed simple changes to the basic Tacotron2
model with some multi-pass fine-tuning techniques to adapt
new speakers to low-resource languages such as Vietnamese.
We demonstrated that it only takes 4 minutes of adaptive data
to generate a new voice with high similarity and only takes
16 minutes to generate a good quality voice. In addition, we
also presented a low-cost method to build datasets for TTS
systems from unlabeled data, which are available on the In-
ternet by combining them with a good ASR system and a data
collection and filtration strategy.
We also demonstrated that this adaptation resulted in bet-
ter pronunciation of words in the target language for source
speakers, and that it may be expanded to more languages in
a variety of ways. We plan to study the efficient adaptation
techniques in generating new speakers from multi-speaker
and unseen speakers for future work.
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Abstract

End-to-end TTS architecture which is based
on Tacotron2 is the state-of-art system. It
breaks the traditional system framework to di-
rectly converts text input to speech output. Al-
though it is shown that Tacotron2 is supe-
rior to traditional piping systems in terms of
speech naturalness, it still has many defects
in building Vietnamese TTS: 1) Not good at
prosodic phrasing for long sentences, 2) Not
good at expression for foreign words. In this
paper, we used 2 methods to solve these de-
fects: 1) Pause detection system for predicting
and inserting punctuation into long sentences
to improve speech naturalness. 2) Translation
system for transcribing foreign words to Viet-
namese words. In the VLSP 2020 evaluation
campaign, our model achieved a mean opinion
score (MOS) of 3.31/5 compared to 4.22/5 of
humans.

Index Terms— Text-to-speech, TTS, Vietnamese
TTS, end-to-end speech synthesis

1 Introduction

Text-to-Speech (TTS) study is widely applied in
real-life but it is still a challenge in the field of
speech processing. Many techniques have been pro-
posed such as concatenative synthesis (Hunt and
Black, 1996), statistical parametric speech synthe-
sis (SPSS). Although concatenative synthesis can
reach highly natural synthesized speech, the ap-
proach is inherently limited by properties of the
speech corpus used for the unit selection process.
Meanwhile, SPSS allows product direct speech
smoothly and intelligibly by a vocoder. A full SPSS
system consists of text analysis, feature generation,
and waveform generation modules a, some SPSS
techniques are used for Vietnamese TTS: Hidden

Markov model (HMM) (Tokuda et al., 2000), Deep
neural networks(DNN) (Ze et al., 2013), generative
adversarial networks (GAN)(Saito et al., 2017) and
End-to-end architectures(Wang et al., 2017). Cur-
rently, DNN approaches have gradually replaced
HMM models for the duration model and acoustics
model. However, the generated voice is often muf-
fled and becomes unnatural. Wavenet (Oord et al.,
2016), Wave RNN (Kalchbrenner et al., 2018),
GAN (Saito et al., 2017) produces audio with sig-
nificantly improved naturalness but requirements
deep experience and voices that are not as realistic
as they are in reality. An end-to-end architecture
(Tacontron 2 and WaveGlow vocoder) include five
components: linguistic analysis, acoustic model,
duration model, parameter generation, and post-
filtering are replaced by encoder-attention-decoder
networks (Wang et al., 2017; Shen et al., 2018), to
be able to effectively optimize the mapping from
input text to acoustic features. Finally, a neural
vocoder such as Waveglow generated a waveform
from the generated mel-spectrogram.

However, in a long sentences or long phrases,
speech synthesis results will not be natural. This
comes from the fact that human speakers usually
break phrases by inserting word transitions instead
of punctuation for the sake of expressivity, better
comprehension or only taking a breath. The term
phrasing is used to describe the phenomenon of
grouping words into phrases and separating these
phrases with pauses or punctuation inserts. In addi-
tion, there are many foreign words in the sentences
that are not in the Vietnamese phonetic dictionary.
If only replacing foreign words with International
Phonetic Alphabet (IPA), the synthesized sentence
will not be pronounced in Vietnamese standard. In
this paper, 2 methods are applied to synthesize sen-



Figure 1: The CaPu model insert the punctuation into
the sentences.

tences more naturally: 1) Pause detection module
will insert punctuation into sentences to improve
prosody of the TTS system, 2) Translation module
will transforms foreign words into the Vietnamese
standard pronunciation word.

2 Prosodic and pronunciation modeling

2.1 Prosodic modeling

When reading long sentences, the reader always
stops at the punctuation or at the position of two
or more words of equal syntactic importance (such
as noun, verb, etc). So, pause prosodic detection is
extremely important affecting the prosody of the
TTS system. However, the provided data from the
VLSP organization (Trang et al., 2020) was the re-
sult of the ASR system, so it had the text only. The
synthetic sound quality of the deep neural network
depends on the input data. Thus, adding the punctu-
ation at a suitable position can enhance the prosody
of our system. To solve this challenging problem,
we integrate the Capitalization and Punctuation
(CaPu) model (Nguyen et al., 2020) to recover the
punctuation of the sentences. The CaPu model not
only inserts the punctuation automatically to cor-
rect the text format but also places the punctuation
at the location relating to breathing.

The CaPu model includes three components that
is the embedding layer, the recurrent layer, and the
classification layer. More specifically, the embed-
ding layers is ViBERT model that embedded the
input sentences to the fixed vectors. The fixed vec-
tors passed through the bidirectional GRU layers.
followed by the conditional random field layer to
classify the punctuation-tag of each input word.
ViBERT is a variation of RoBERTabase model with
fewer layers than the original model, it contains 4

encoder layers, the number of heads is 4 and the
hidden dimension size is 512. The model has 4
bidirectional GRU layers, the hidden size of GRU
cell is 512. The figure 1 depicts CaPu architecture.

To train CaPu model, we collected a huge of
text from many domains on the internet including
wikipedia, law, politics, etc. This document has the
punctuation in accordance with Vietnamese stan-
dard style. To mimic the pause of the reader, we use
word time-stamp of the ASR system. If the silent
time is more than 0.3 second, we put the commas
at this silent position. Finally, we trained the CaPu
model with the processed data. As a result, CaPu
model can insert the punctuation at the proper loca-
tion by 2 strategy, Vietnamese standard and reader
style. Besides, we also added a dot at the end of
transcript text to present the end of audio. The re-
sult of the CaPu model:
Raw transcript:

cảm giác đó đến một cách đột ngột nhưng mụ
xua đuổi nó đi không cho nó chạm tới mụ cũng như
không để cho nó chạm tới nền cộng hòa
After add commas to transcript:

cảm giác đó đến một cách đột ngột , nhưng mụ
xua đuổi nó đi , không cho nó chạm tới mụ , cũng
như không để cho nó chạm tới nền cộng hòa .

2.2 Pronunciation modeling

One of the biggest challenges for the VLSP Text-
To-Speech (Trang et al., 2020) is that the tran-
script text has many foreign words. Because for-
eign words are out of the Vietnamese vocabulary
and can not convert to the phoneme directly. This
leads to trouble for the participants when joining
and building the Vietnamese TTS system. To han-
dle and tackle this problem, we used Vietnamese
sound to pronounce these English words. For ex-
ample, “kuttner” will be pronounced by “cắt nơ”,
seeing more examples in Table 1. In order to trans-
form from foreign words to Vietnamese words, we
used the popular translation model-Transformerbase
(Vaswani et al., 2017) model.

The Transformer architecture has two modules,
the encoder, and the decoder, and 2 component is
connected through an attention mechanism. The
Transformer model that we used for this challenge
is composed of a stack of N=6 identical layers for
both the encoder and decoder.

To train this translation model, we must create a
large number of pair of English-Vietnamese words.
The total dataset that we produced is more than 1



Figure 2: Our TTS pipeline, the input text passes to the pause detection and text normalization module. Subse-
quently, the processed data passes to Tacotron2 and WaveGlow to generate speech synthesis

English word Vietnamese word
kuttner cắt nơ
Anderson an đơ sơn
vera vê ra
reme rê mi

Table 1: Convert English words to Vietnamese words

hundred million pairs. The result of the translation
model was displayed in Table 1.

3 Text-to-Speech System

Nowadays, for the TTS task, the end-to-end speech
synthesis pipeline consists of two phases, 1. con-
verting text to Mel-spectrogram and 2. converting
Mel-spectrogram to waveform synthesis. The
model Tacotron2 combining with WaveGlow
vocoder is still state-of-the-art for the TTS task.
Tacotron2 is a deep neural network receiving
a text to predict Mel-spectrogram signal. Then
Mel-spectrogram will be converted to waveform
thanks to WaveGlow. However, we realized that
synthetic speech was noisy. Therefore, we used
a denoiser model, attaching at the end of the
WaveGlow model.

- Tacotron2: The network has two components
an encoder and a decoder. We had a small change
comparing with the original model. To adapt to
the characteristic of the Vietnamese language,
the input model was phoneme level instead
of character level. Phoneme character passed
to the embedding layer, which represented by
512-dimensional. Afterward, these vectors passed
through a stack of 3 convolutional layers, followed
by single bi-directional LSTM layers to generate
the encoded features. The encoder output was
consumed by an attention network which yielded
a fixed-dimensional vector. Finally, the decoder
had the mission of converting this vector to a
Mel-spectrogram. To train the Tacotron2 model,
we minimized the output of the model with ground

trust using mean squared error(MSE).

- WaveGlow: The network that we used for the
TTS challenge was similar to the original model.
The model transformed the output of the Tacotron2
model to the waveform signals. WaveGlow is de-
ployed using only a single network and single cost
function, so it is fast, efficient and can produce
high quality audio synthesis. The network has 12
coupling layers and 12 invertible 1 x 1 convolu-
tions. In coupling module has 8 layers of dilated
convolutions with 512 channels used as residual
connections and 256 channels in the skip connec-
tion. For the challenge, we used the pre-trained
model provided by the author to synthesize the au-
dio.

- Denoise Module: This module will reduce the
noise of synthetic audio generated from WaveGlow.
Firstly, we produced bias audio by using Wave-
Glow infer a zero Mel-spectrogram with shape
1x80x88. Then both synthetic audio and bias au-
dio will be transformed to Mel-spectrogram by
the short-time Fourier transform method. Next, we
used the synthetic Mel-spectrogram minus the bias
Mel-spectrogram. As a result, we received the final
Mel-spectrogram and we used the inverse Fourier
transform function to convert it back to audio.

4 Experimental Setup

4.1 Dataset
The duration of the training dataset is about 5-
6 hours of a single female speaker and has 7770
audio files. The duration of each file is from 2s to
11s. The sample rate is 44100Hz, 2 channels. To
train the model, we resampled to a sample rate of
20500Hz and also convert it to mono channel (1
channel). Besides, we decreased the volume of each
file audio by 50%. To reduce noise for the training
data, audio in training dataset will be trimmed the
silence at start and end position. All transcript text
in the dataset is spelled out, for example, “30” is
written as “ba mươi”.



Data Processing Evaluation

No

Speech synthesis can not
read the foreign words,
the pause in the sentences
is unnatural

Pause detection

Speech synthesis can
pause at the punctuation
correctly, prosody seem
naturally

Pause detection +
Text Normalization

Speech synthesis can
pronounce foreign words.

Table 2: Data processing and evaluate the system

4.2 Experimental Setup

Both CaPu and translation model were imple-
mented by Fairseq (Ott et al., 2019) framework. We
used Adam optimizer with beta factor (0.9, 0.98),
the learning rate of 0.0005. Conditional Random
Field (CRF) loss was applied to train the model and
the learning rate scheduler was the inverse square
root. The warm-up initial learning rate is 1e-7, and
the batch size is 64.

To train the Tacotron2 model, we use GeForce
RTX 2080 Ti, 11GB, the learning rate is 1e-3, the
weight decay is 1e-6 , the batch size is 64. Adam
optimizer with β1=0.9 and β2=0.999, epsilon=1e-
6.

5 Result

We used Tacotron2+Waveglow to evaluate the TTS
system. We conducted many experiments relating
to data processing, see Table 2 for more detail. Fi-
nally, when we combined 2 methods processing
pause detection and text normalization, the TTS
system yielded speech synthesis naturally. Not only
prosody seem natural, but also our system can pro-
nounce foreign words similar to Vietnamese peo-
ple.

MOS was applied to evaluate the system. The
speech synthesis was evaluated by three groups
of listeners: speech experts, volunteers, and un-
dergraduates. The listeners will have 5 options to
give a score from 1-5: excellent(5), good(4), fair(3),
poor(2), 1(bad).

In the VLSP 2020’s challenge, as shown in Table
3, our architecture achieved a MOS of 3.31 for the
naturalness. For intelligibility, the rate of hearing
correct words is 83.10% and the rate of listening to
correct syllabi’s is 82.90%

MOS
Our system 3.31
Human 4.22

Table 3: MOS Result for the VLSP Dataset

6 Conclusion and future works

In this paper, we describe our architecture for the
Vietnamese Text-to-speech system. For the data
from an organization, our approach yielded a MOS
of 3.31. By conducting many experiments, we re-
alized that data processing is very important in this
challenge. By converting English words to Viet-
namese words, also add commas to transcript text,
these techniques assist model producing utterance
synthesis very naturally.

In the future, we can experiment with more state-
of-the-art architecture such as Hifi-Gan, Mel-Gan,
Glow-TTS. Also, exploring many challenges of
TTS such as how to training TTS with small data,
TTS adaptation, etc.
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Abstract
In recent years, studies on automatic speech recognition (ASR)
have shown outstanding results that reach human parity on short
speech segments. However, there are still difficulties in stan-
dardizing the output of ASR such as capitalization and punc-
tuation restoration for long-speech transcription. The problems
obstruct readers to understand the ASR output semantically and
also cause difficulties for natural language processing models
such as NER, POS and semantic parsing. In this paper, we pro-
pose a method to restore the punctuation and capitalization for
long-speech ASR transcription. The method is based on Trans-
former models and chunk merging that allows us to (1), build
a single model that performs punctuation and capitalization in
one go, and (2), perform decoding in parallel while improving
the prediction accuracy. Experiments on British National Cor-
pus showed that the proposed approach outperforms existing
methods in both accuracy and decoding speed.
Index Terms: speech recognition, capitalization and punctua-
tion insertion

1. Introduction
In a typical setup of an ASR system, punctuation and capital-
ization of words are removed because they do not affect the
pronunciation of words. As the result, the output of ASR con-
tains purely a sequence of words or alphabet characters depend-
ing on the model type. While this output is sufficient for many
applications, such as voice commands, virtual assistants, where
speech segments are usually short and independent, it is difficult
to be used in applications that transcribes long speech segments.
It would be easier for human to read a document with proper
punctuation and word capitalization. Moreover, when ASR re-
sults are fed into NLP models to perform machine translation
(MT) or name entity recognition (NER), punctuation and word
capitalization are crucial pieces of information that can help to
boost the performance [1, 2, 3].

Regarding studies on segmentation and punctuation inser-
tion for ASR, Cho et al. [1] proposed a method to use phrase-
based translation models that consider the punctuation insertion
as machine translation tasks. The model takes input is unpuc-
tuted text and translates into a punctuated one. Zelasko et al.
[4] and Tilk et al. [5] incoporate more information from speech
signal to improve the performance. In [6, 7], dynamic condi-
tional random fields (CRFs) [8] were used to predict punctua-
tion. The works proposed by Cho et al. [9] and Tilk et al. [5]

Proposed Method

In his first appearances, Superman was considered a vigilante. 

in his first appearances superman was considered a vigilante

Figure 1: The proposed method for performing both punctua-
tion and word capitalization in one go

made use of end-to-end translation model with LSTM to pre-
dict punctuation and segmentation. They successfully demon-
strated that the end-to-end models outperform conventional ap-
proaches. While existing works are capable of predicting punc-
tuation, they share similar limitation. First, the models only
handle one task which is punctuation insertion, however, out-
put from ASR is also typically uncapitalized. While adding just
punctuation might help speech translation to determine when to
translate, other NLP tasks such as NER and PoS tagging do not
get much help because one of the key feature of these models
is word capitalization. Second, long input sentences are usually
split into fix-length and non-overlapped chunks before feeding
into the model. Although this method helps to speedup the in-
ference by processing chunks independently and in parallel, it is
prone to bad prediction of words around the chunk’s boundary
because there isn’t enough both left and right context informa-
tion in the area.

In this paper, we proposed a method based on transformer
models and overlapped chunk-merging to restore both word
capitalization and punctuation in one go as illustrated in Fig-
ure 1. The system consists of 3 components (Figure 2 - b). The
first component is an overlapped chunk spliting that takes a long
input sequence and splits them into chunks with overlap. This
process make sure that the second component, which is the cap-
italization and punctuation model, always have enough left and
right context of words to make the prediction. The last com-
ponent is the chunk-merging where the overlapped output are
combined into a single sentence. This process decides which
part of the overlap area to be removed and to be kept. The
method allows us to (1), build a single model that performs
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doesbillthe not become law unless houses of congress vote to   vetooverride the

doesbillThe not become law unless houses of congress vote to   veto.override the

Capitalization and Punctuation Model

Chunk Split

of congress vote to   vetooverride thedoesbillthe not become law unless houses

of congress vote to   veto.override thedoesbillThe not become law unless houses

(a) Capitalization and Punctuation System Without Overlap-
ping Segments

doesbillthe not become law unless houses of congress

doesbillthe not become law unless houses of congress

vote to   vetooverride the

law unless houses of congress vote to   vetooverride the

doesbillThe not become law, unless houses of congress

law unless houses of Congress vote to   veto.override the

doesbillThe not become law, unless houses of Congress vote to   veto.override the

Overlapped-Chunk Merging

Capitalization and Punctuation Model

Overlapped-Chunk Split

(b) Proposed System Architecture for Capitalization and Punc-
tuation. Because of more context, it can add comma after “law”
and upper case “congress”

Figure 2: Capitalization and Punctuation System With and
Without Overlap-ping Segments. Ground truth of this exam-
ple is “The bill does not become law, unless Congress vote to
override the veto.”

punctuation and capitalization without the need of pipeline re-
sults from one system to another, and (2), perform decoding in
parallel while improving the prediction accuracy.

2. End-to-end Model for Punctuation and
Segmentation

End2end models for punctuation works in a similar way with
machine translation tasks [10, 11] where it takes input is a se-
quence of of lowercase, unpunctuated words and outputs a se-
quence with truecase and punctuation inserted. Figure 2a illus-
trates the use of end-to-end models for restoring capitalization
and punctuation proposed in [12]. First, a long input text from
ASR is split into small segments and then, they are fed into
a translation model to produce an output sequence. While the
approach can take advantages of LSTM models that it is able
to learn longer context information, it usually failed to predict
truecase or punctuation of words near the segment boundary.

Previous studies [13] has pointed out that Transformer per-
forms better than LSTM models by exploiting its self-attention
layer to capture context more efficiently and speedup the train-
ing process. Transformer is basically an encoder-decoder
model. It contains multiple identical encoders and identical
decoders stacked upon each other. Each encoder has a self-
attention layer that extract surrounding words information when
a word is being encoded. This layer is followed by a feed for-
ward neural network; the networks in different encoders do not
share weights. Each decoder also has a self-attention layer and
a feed forward neural network, but to enhance the relevant parts
of input, an attention layer (similar to attention in sequence-to-

sequence model) is added between the 2 sub-components.
Transformer’s architecture was hand-crafted manually,

Evolved Transformer (ET) was created to enhance Transformer.
The idea behind ET is using neural architecture search (NAS)
[14] to look for the most promising setup among different al-
ternatives of neural networks. To modify Transformer model
configuration toward a better one, ET uses an evolution-based
algorithm with an innovative approach to expedite the process.

3. Proposed Method
Figure 2b describes our system architecture. The system works
as follows, first, output from and ASR module (lowercase with-
out punctuation) is fed to the Overlapped-Chunk Split module
to produce overlapped segments. Second, the Capitalization and
Punctuation Model takes the split segments and processes them
in parallel to output a list of outputs. Finally, the outputs are
merged back to form a final sentence using the Overlapped-
Chunk Merging module. Details of each modules are described
in the following sections.

3.1. Capitalization and Punctuation Model

This section describes the architecture and hyperparameters of
our models. To be certain that our method of overlapping seg-
ments are efficient regardless of models, we preformed the ex-
periments on sequence-to-sequence LSTM model and Evolved
Transformer framework one by one. Our models are imple-
mented based on Tensor2Tensor[15] and OpenNMT[10] frame-
work. Concatenating overlapped chunks is developed as a sep-
arated module and used only after the inferring process.

To replicate the same condition, both the models have 6
hidden layers, word embedding size of 256, batch size of 4096
and trained for 200 epochs; the number of head in transformer
model is 8. Their jobs is to convert from a sequence of lower-
case text without punctuation to another sequence of capitalized
text with punctuation. With 500 MB of text data for training,
each model took 20 hours to train on an NVIDIA 2080Ti GPU.

3.2. Algorithm for Overlapped-Chunk Split and Merging

From preliminary experiments, we observed that the model
often makes mistakes when processing words near the chunk
boundary. We hypothesize that there is not enough context in-
formation around the area, leading to the poor performance of
the model. To mitigate the problem, we proposed a method to
split long input sentences into chunks with a chunk size of k
words and a sliding window of k/2 words so that 2 consecu-
tive chunks are overlapped. Later, the output of the model are
merged in the way that we only keep predictions of the model
where there is enough context information (an example is illus-
trated in Figure 2b).

While splitting input sentences into overlapped chunks is
straight-forward as we only need to decide the chunk and over-
lapped size, merging the overlapped results is more difficult.
Since the output of the overlapped region between 2 consecu-
tive chunks can be different, we need to decide which words
to keep and which word to remove to form a complete sen-
tence. According to the hypothesis above, we defined a pa-
rameter called min_words_cut that indicates the number of
words at the end the first chunk to be removed and also the
number of words to be kept at the end of overlapped words in
the second chunk. It ranges from 0 to the overlap size. With
the value of 0, the whole overlapped words in the first chunk
are kept while the overlapped words in the second chunk are



First chunk

Second chunk

does

min_words_cut

Concatenate result

min_words_cut

billThe not become

doesbillThe not become

law, unless

law, unless

vote to

houses of congress

law unless houses of Congress

houses of Congress

override the veto.

vote to override the veto.

Figure 3: Overlapped Chunk Concatenation

Original data:
The bill does not become law, unless houses of Congress vote

to override the veto.

Input data:
the bill does not become law unless houses of congress
law unless houses of congress vote to override the veto.

Plain text output:
The bill does not become law, unless houses of Congress
law, unless houses of Congress vote to override the veto.

Encoded output:
U$ L$ L$ L$ L$ L, L$ L$ L$ U$
L, L$ L$ L$ U$ L$ L$ L$ L$ L.

Figure 4: Data samples with chunk size of 10

removed (illustrated in Figure 3). The same principle is applied
when min_words_cut equals to the overlapped size.

3.3. Data Preparation

To simulate the ASR output, we preprocess the dataset as fol-
lowed. First, the characters are cleaned up: only the alphabet
characters and three punctuation (comma, full stop and ques-
tion mark) are kept. Then, we make sure that the punctuation
belongs to the previous word, for instance, we use “laptop, mo-
bile” not “laptop , mobile”. Finally, we split data into chunks
according to the split algorithm described in the above section.
An example is shown in Figure 4.

We prepared 2 formats of training data: plain text and en-
coded text [9]. Both formats takes the lowercase text without
punctuation as input. The plain text model, as the name sug-
gest, provides output as plain text with punctuation and capi-
talization. The encoded text model, on the other hand, gives
the result in an encoded format that contains only 6 classes as
showed in Table 1. It is obvious that the encoded format will
help the model to train and infer faster than the plain text since
its vocabulary size is fixed and very limited. However, due to
the limited vocabulary size, the decoder of the end-to-end model
does not have much information of the words and the context in-
formation. We are interested to see how this method affect the
quality in comparision with the plain text model.

4. Experiments and Results
4.1. Corpus Description

To train and evaluate the proposed method, we use the British
National Corpus (BNC) [16] that contains 100 million words in
both written and spoken language from a wide range of sources.
It is designed to represent a large cross-section of British En-

glish from late 20th century. We use the XML edition which
contains 4049 files with the size of 515 MB in total. The li-
brary NLTK [17] is used to extract 6M sentences from BNC
dataset. For the test set, we use 67 thousand sentences. The
number of label instances for each of the punctuation and cap-
italization classes available in our training and testing data set
are displayed in Table 1.

Table 1: BNC dataset detail. “U” and “L” respectively denote
uppercase and lowercase word (either first or all character);
“.”, “,” and “?” denotes full stop, comma, and question mark.
The dollar sign (“$”) indicates there are no punctuation coming
after the word.

Class Training Testing

U 13 M 146 K
L 81 M 1 M
. 4.6 M 54 K
, 4.9 M 57 K
? 380 K 5 K
$ 87 M 1 M

4.2. Evaluation metric

The models (described in section 3.1) are evaluated using pre-
cision, recall, and F1 scores. For ease of representation, we
converted output words and punctuation to the 6-class encoded
format as illustrated in Table 1. The evaluation results indicate
how well the method can predict truecase of words and punctu-
ation restoration. Since prediction of lowercase and blank space
are good in every models, we ignore them in compare table.

4.3. Evaluation of chunk-merging

Table 2: Comparison Seq2seq LSTM with and without using
Chunk Merging for plain text format

Model Class Precision Recall F1-score

Chunk Merging
Seq2seq LSTM

U 0.74 0.53 0.62
. 0.43 0.41 0.42
, 0.10 0.87 0.19
? 0.49 0.22 0.30

Non-Chunk Merging
Seq2seq LSTM

U 0.70 0.53 0.61
. 0.40 0.41 0.41
, 0.10 0.85 0.18
? 0.45 0.20 0.28

Table 2 shows the result of the seq2seq LSTM model with
and without chunk-merging. As we can see, with the help of
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Figure 5: F1-score on different min word cut. It peak in the
middle range of overlap size (4-10). Predicting uppercase and
lowercase are stable and independent from min word cut, ques-
tion mark is quite sensitive with this hyper-parameter.

Table 3: Comparison Evolved Transformer with and without
using Chunk Merging for plain text format

Model Class Precision Recall F1-score

Chunk Merging
Evolved Transformer

U 0.90 0.84 0.87
. 0.74 0.72 0.73
, 0.61 0.51 0.56
? 0.82 0.63 0.71

Non-Chunk Merging
Evolved Transformer

U 0.84 0.79 0.81
. 0.56 0.66 0.61
, 0.40 0.42 0.41
? 0.70 0.46 0.56

chunk merging, F1 score on all classes are improved consis-
tently by 1%. The result indicates that the overlapped words
give the model more information to make better prediction, and
that our chunk-merging method can select good portion of the
overlap area.

The chunk-merging method even shows superior perfor-
mance over non-chunk-merging when it is used with Evolved
Transformer models. Results on Table 3 shows that the predic-
tion accuracy of the question mark raises from 56% to 71%, this
is a margin of 15% improvement and the minimum improve-
ment of the system is 6% for the uppercase class. Figure 6 dis-
plays the confusion matrix of the model. The matrix shows that
the comma is the most difficult class to predict and it is often
mis-predicted as blank characters. In addition, the matrix also
indicates that the model always predict a word (either lowercase
or uppercase) when the input is word.

The results prove our hypothesis that there is not enough
context for model to predict efficiently at the beginning and
the end of each sample and that drawback can be overcome
by adding more context with chunk overlapping and chunk-
merging method.

4.4. Evaluation on plain-text model and encoded-text
model

We further compare the result on models using plain text and
encoded text. The ones with plain text outperform the ones with
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Figure 6: Confusion matrix of Evolved Transformer model with
plain text and overlapping format

encoded text, however the model using encoded text has smaller
model size and is faster for inference. The details are in Table 4

Table 4: Comparison of results encoded text and plain text using
Evolved Transformer

Model Class Precision Recall F1-score

Encoded Text
Chunk Merging

Evolved Transformer

U 0.87 0.80 0.84
. 0.68 0.66 0.67
, 0.50 0.40 0.44
? 0.76 0.55 0.63

Plain Text
Chunk Merging

Evolved Transformer

U 0.90 0.84 0.87
. 0.74 0.72 0.73
, 0.61 0.51 0.56
? 0.82 0.63 0.71

To explore the impact of min_words_cut value to the
quality of the result, we performed the experiment on sequence-
to-sequence LSTM model with the overlapping of 15 words
and min_words_cut ranges from 0 to 15. The outcome
shown in Figure 5 indicates that f1-scores peak in the mid-
dle range of chunk size (4-10). It demonstrate that predictions
of uppercase and lowercase are stable and independent from
min_words_cut.

As processing chunks is paralleled and the concatenation
algorithm has O(n), this approach is fast and proved to be su-
perior to conventional methods.

5. Conclusion
In this research, we have proposed an end-to-end model that
restores both punctuation and capitalization in one go. With
chunk-split-merging, the method can splits and processes sen-
tences in parallel and merges outputs to form the final sentence
output. Experiments shows that the approach outperform exist-
ing methods that do not utilize chunk-merging by a significant
margin, especially when combining with Evolved Transformer.
In the future, we will integrate this solution with ASR model to
form an end-to-end model that can transform speech to a well
format text document.



6. References
[1] E. Cho, J. Niehues, and A. Waibel, “Segmentation and punctua-

tion prediction in speech language translation using a monolingual
translation system,” in International Workshop on Spoken Lan-
guage Translation (IWSLT) 2012, 2012.

[2] M. Tkachenko and A. Simanovsky, “Named entity recognition:
Exploring features.” in Proceeding of KONVENS, 2012, pp. 118–
127.

[3] V. Yadav and S. Bethard, “A survey on recent advances in named
entity recognition from deep learning models,” in Proceedings of
CICLing, 2018, pp. 2145–2158.

[4] P. elasko, P. Szymaski, J. Mizgajski, A. Szymczak, Y. Carmiel,
and N. Dehak, “Punctuation prediction model for conversational
speech,” Interspeech 2018, Sep 2018. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2018-1096
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ABSTRACT  

 
This paper presents a high quality Vietnamese speech corpus 
that can be used for analyzing Vietnamese speech 
characteristic as well as building speech synthesis models. 
The corpus consists of 5400 clean-speech utterances spoken 
by 12 speakers including 6 males and 6 females. The corpus 
is designed with phonetic balanced in mind so that it can be 
used for speech synthesis, especially, speech adaptation 
approaches. Specifically, all speakers utter a common dataset 
contains 250 phonetic balanced sentences. To increase the 
variety of speech context, each speaker also utters another 
200 non-shared, phonetic-balanced sentences. The speakers 
are selected to cover a wide range of age and come from 
different regions of the North of Vietnam. The audios are 
recorded in a soundproof studio room, they are sampling at 
48 kHz, 16 bits PCM, mono channel. 
Index Terms: Speech database, Speech corpus, Vietnamese 
speech corpus 
 

1. INTRODUCTION  

In speech related research, especially, in speech analysis and 
speech synthesis studies, it is crucial  to have high quality 
speech corpora. In some popular languages such as English 
and Japanese, there have been many intensive researchs on 
designing databases [1,2]. In Vietnam, the number of speech 
data research is alo increasing. There are many speech 
corpora such as VOV (Radio broadcast resources) [3], MICA 
VNSpeechCorpus [4], AIlab VIVOS [5], VAIS-1000 [6]. 
However, those corpora are either small or do not have a high 
quality sound. In particular, the VAIS-1000 corpus is 
designed from only a speaker with local accent from one 
particular region; The VIVOS corpus does not have high 
quality speech and it is designed specifictly for speech 
recognition tasks. The audio from VOV corpus are selected 
from media sources and are also only suitable for speech 
recognition tasks.  

On the other hand, while research on speech synthesis 
adaptation which we can generate a model for a specific 
speaker with a very limited amount of speech samples is an 
active research field on popular languages [7], it is difficult 
to conduct such a research on Vietnamese due to a very high 
requirement on the data design. First, audio has to be recorded 
in a clean, soundproof recoding room to ensure the high 
quality speech. Second, the speakers have to be selected to 

cover wide range of ages as well as living areas. The corpus 
proposed in MICA VNSpeechCorpus [4] is well designed and 
contains good quality speech. However, although the total 
size of the corpus is big, the amount of short sentences that 
are suitable for speech synthesis adaptation is rather small.  

In this paper, we present a high quality and large scale 
Vietnamese speech corpus. We design the corpus with a 
strategy that maximizes the coverage of monophone and 
biphone. Speakers are carefully selected with a wide range of 
age and living region. In the following section, we first 
describe Vietnamese phonetic structure (Section 2), it 
provides essential information to design and select the 
recording transcription described in Section 3. Finally, we 
provide details of the corpus along with analyses in Section 
4. 

 
2. BASIC PHONETIC STRUCTURE OF 

VIETNAMESE 
 
Vietnamese language is a complex language compared with 
other languages because it is a monosyllable language with 
tones, every syllable always carries a certain tone [8,9]: 

TONE 
Initial 

 
FINAL 

Onset Nucleus Coda 

Table 1. Structure of Vietnamese syllables 

There are 22 initials in Vietnamese, include: /b, m, f, v, t, 
t’, d, n, z, ʐ, s, ş, c, ʈ, ɲ, l, k, χ, ŋ, ɣ, h, ʔ/. Onset /w/ has a 
function of lowering the tone of the syllables. The number of 
main finals consists of 16 phonemes, including 13 vowels and 
3 dipthongs. Specifically, /i, e, ε, ɤ, ɤˇ, a, ɯ, ă, u, o, ɔ, ɔˇ, εˇ/ 
and 3 dipthongs / ie, ɯɤ, uo/. In addition to the final /zero/, 
there are 8 positive finals including 6 consonants /m, n, ŋ, p, 
t, k/ and 2 semi-vowel /-w, -j/.  

There are 6 tones in Vietnamese. Five tones are 
represented by different diacritical marks such as low- falling 
tone, high-broken tone, low-rising tone, high-rising tone, 
low-broken tone. The tone called mid tone is not represented 
by a mark. Tones are differentiated in the following Table 2 
[10,9]: 

Contour 
Pitch 

Flat 
Unflat 

Broken Unbroken  
High No mark High-broken High-rising 
Low Low-falling Low-rising Low-broken 

Table 2. Structure of Vietnamese tones 
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The total number of unique syllables in Vietnamese is 
19000 but there are only 6500 syllables used in practice [8,9]. 

3. DESIGN 

In this section, we describe our recording transcription design 
strategy. To have a wide variety of context, we select the 
recording sentences from electronic newspapers. However, 
since the data from newspapers is typically noisy, we need to 
put it through a chain of data processing phases as illustrated 
in Figure 1. Then, we select the smallest subset of data that 
maintain the phonetic balance criterion. 

3.1. Text data preprocessing 
 

The text recording needs to be designed to meet the criteria 
that it is not too large but it must ensure the phonetic balance. 
We first collect a large amount of text from electronic 
newspapers. And then, process it in a chain of processing 
phases.  
 
 
 
 
 
 

Figure 1. The process of refining and processing the 
recording texts 

Phase 1: The data downloaded from newspapers has the 
main content stored in the <content> tags, other information 
outside the tag is metadata. To reduce noises, we only select 
texts from the <content> tag. Next we cut them into small 
sentences based on ending punctuations such as ".", "?", "!". 
To further reduce noises, we remove all lines contain post 
time, shortcuts, address, as well as arbitrary strings (asterisks, 
special characters, punctuation marks, author names, 
annotations, quoted source names etc). 

Phase 2: In this phase, the main task is to normalize the 
text (includes many non standard words) according to the 
standards words in Vietnamese [11]. Non standard words 
include digit sequences; numbers; abbreviations; units of 
measurement; roman numerals; foreign proper names and 
place names... We analyzed text and used the technique to 
transforming (or expanding) a sequence of words into a 
common orthographic transcription. The process is done by 2 
steps: 

Step 1. To reduce pronunciation ambiguity, all numbers, 
date, time and measure units are spelled out with the 
following rules:  
- Number format: 
Numbers are transcribed in code by assigning them to arrays 
and transcribing them into corresponding strings (e.g. 1235 
→ một nghìn hai trăm ba mươi năm). Then exceptions are 

replaced with standard words (e.g. không mươi→ lẻ, mươi 

năm →mươi lăm, mươi một → mươi mốt). 
- Time format: 

Format dd/mm/yyyy is automatically transcribed into 
day...month...year . 
 Format (dd/mm, dd-mm-yyyy and dd-mm) with the word 
‘day’ standing in front is transcribed as “day”, “month”. 
Format hh:mm:ss is understood as hour, minute, second 
Format hh:mm with “at” standing in front is transcribed into 
“hour”, “minute”.  
- Units of measurement: 
Separate alphanumeric characters with spaces (e.g. 10Kg → 

10 k, 10m → 10 m, 11hz → 11 hz, 8/10 → 8 / 10, 90% → 90 
%). 
Then, replace words with transcribing digits for signs or 
measure units (e.g. 10 kg → ten kilograms, 10 meters → ten 
meters, 11 hz  eleventh hertz, 8 / 10  eight per ten, 90% 
 ninety percent). 

Step 2. Transcribe abbreviated acronyms or proper 
names with self-defined dictionaries (e.g. TP → city, HCM 

→ Ho Chi Minh City, VND → Vietnam dong, Paris → Pa ri, 

Samsung → Sam Sung).  
After normalizing the text, we split them into small sentences 
and only keep ones contain minimum 40 and maximum 90 
syllables. This is an appropriate length for speech recording. 

Phase 3: The final step is to select a good amount of 
sentences for audio recording. The recording sentences 
should maintain the phonetic balance property and be small 
to reduce recording cost. We adopt text selection based on 
greedy search to find the optimal sentences [12]. This step is 
repeated until a certain amount of sentences are selected. 
 
3.2. Recording 
 
To help speeding up the recording, as well as make it easier 
and less prone to human error. We designed a recording 
application as shown in Figure 2. The speaker can listen to 
their recorded audio and can also see the audio signal to 
ensure that there is 1 second of silence at the beginning and 
ending of utterances and there is no audio clipping occurred. 
During a recording session, if there is any sentence doesn’t 
meet the requirement, the speaker will only need to record the 
sentence again. The quality assurance process is managed by 
an administrator using the same application with speakers. 

 
 

Figure 2. Web-based recording application 

Phase 1: 
Cleans data 

Phase 2: 
Normalizes 

text 

Phase 3: 
Selects 

recording 
sentences 
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The audio is recorded with a high-quality TakStar PC-
K600 microphone using a Windows 10 computer running a 
Firefox browser. The audio sampling rate is 48Hhz, 16-bits 
PCM, and mono channel. 

4. EXPERIMENT 

The following Table 3 summarizes the data collected in the 
above text data preprocessing section: 
No Name  Size Unit Note 
1 Original data 1.978/9,6 File/GB Data in file format .txt 

2 Phase 1 1.978/8,1 File/GB Refine content, raw 
processing 

3 
 

Phase 2 4.036.312 Sentence Text Normalization 

4 Phase 3 250/2.400 share/non-
shared 

sentences 

Select sentences for 
recording: each 
person records 250 
share common 
sentence and 200 
none-share sentences. 

Table 3. Steps of text data preprocessing 

4.1 Corpus detail 
To ensure the wide variety of speech, we selected 12 speakers 
from 5 provinces of North Vietnam including 6 males and 6 
females aged 22 to 35. Our target number recording sentences 
is 250 that has to maintain the phonetic-balanced property. 
Our experiment on data selection algorithm described in the 
section above shown that only 250 utterances are needed to 
cover all monophone and 99% of bi-phone. This is a good 
sign that we do not have to select many sentences to meet the 
requirement. We use this 250 utterances for all speakers. 
 

However, to increase the variety, we also want each 
speaker utter a separate set of text. Therefore, we run the data 
selection algorithm again to select other sets for each speaker. 
Each run, we removed the selected sentence to make sure 
there are no duplicated sentences in the corpus. As the result, 
we have 200 x 12 phonetic-balanced sentences. Note that 
male and females speakers share the same recording 
utterances. As the result, we have recorded 2,400 speech 
samples. The results as shown in Table 4.  

Data set 
Number 
of letters 

Number 
of 

syllables 

Number of 
syllables 

per 
sentence 

Unique 
syllables 

250 sentence set  14.954 3.268 59,8160 1.205 
2400 sentence set  120.6320 26.308 50,2633 2.758 

Table 4. Statistics of text sentences for recording 

4.2 Data analysis 
4.2.1 Phonemes statistic  
To evaluate data corpus, we use several modules to count two 
text data sets based on occurrence frequency and deference 
of phonemes, syllables and words. The results as shown in 
Table 5.  

 
Set of 250 share common 

sentences 
Set of 2,400 none-share 

sentences 

No 
Bi 

phone 

Frequency 
of 

Occurence 

Mono 
phone 

Frequency 
of 

Occurence 

Bi 
phone 

Frequency 
of 

Occurence 

Mono 
phone 

Frequency 
of 

Occurence 
1 ea-ngz 89 ngz 526 a-iz 809 a 4482 
2 a-iz 84 a 510 oo-ngz 644 ngz 4235 
3 oo-ngz 78 iz 347 ea-ngz 636 iz 3133 
4 l-a 76 nz 340 aa-nz 507 nz 2871 
5 oa-ngz 59 k 296 ie-nz 504 k 2432 
6 aa-nz 58 i 286 u-ngz 484 oo 2355 
7 ngz-k 56 oo 265 l-a 482 i 2286 
8 u-ngz 54 dd 236 a-nz 472 dd 1981 
9 k-o 53 tr 232 aw-iz 469 tr 1863 
10 aw-iz 52 aa 227 oo-iz 464 aa 1824 
11 a-nz 51 wa 218 i-ngz 447 kc 1724 
12 ie-uz 51 kc 216 w-a 436 aw 1658 
13 wa-ngz 50 ie 211 oa-ngz 419 ie 1647 
14 aa-tc 49 aw 202 k-o 411 wa 1598 
15 ow-iz 49 ee 190 ie-uz 401 uz 1579 
16 ie-nz 48 uz 188 ngz-k 400 o 1464 
17 uw-ngz 48 o 183 k-uo 389 t 1443 
18 w-a 45 uw 182 ow-iz 389 mz 1442 
19 wa-kc 45 th 180 b-a 386 ee 1410 
20 oo-iz 44 tc 175 uw-ngz 379 m 1386 

Table 5. Statistics of 20 most popular phonemes in 2 data 
set (without sil) 

4.2.2 Sound quality analysis 
The sound quality was analyzed by Praat v6.0 software to 
evaluate the characteristics of sound waves, spectra, pitch and 
sound intensity [13]. The following example in Figure 3 will 
analyze the waveforms and spectrograms  of  a female voice 
extracted from the utterance "đây là một chuyên mục tôi cảm 
thấy tâm đắc và uy tín" (in English “this is the prestige 
category which I feel favorite”). 
 

 

Figure 3. Waveform and spectrogram of  the female voice  
Data evaluation was done through the assessment of the 

recording environment, the noise ratio [14]. Through analysis 
and evaluation of all data, the recording was evaluated to be 
of good quality with clear sound and little noise. 

4.2.3 Duration analysis 
In this experiment, we are interested in the difference 
between genders and ages in term of duration of words. To 
obtain word duration, we build an automatic speech 
recognition (ASR) using Kaldi toolkit [15]. The training for 
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the ASR system is the same data used for the decoding 
process so that we can have accurate audio alignment results. 
State duration of each HMM are modeled by a multivariate 
Gaussian estimated from histograms of state durations which 
were obtained by the Viterbi segmentation of training data 
[16,17].  

 
Figure 4. Duration distributions of vowels spoken by 

female voices at the same age 

 
Figure 5.  Duration distribution of vowels spoken by 

people with wide range of age and different gender 

Figure 4 shows vowel duration distributions of 4 female 
speakers at the same age. As we can see, the range of all 
distributions are quite small, indicating that females at the 
same age tend to have similar reading speed. On the other 
hand, Figure 5 shows the duration distributions of speakers 
with different genders and wide range of age. We can clearly 
see that the distribution is larger than it is in Figure 4. 

 
As one of the purpose of the corpus is to build speech 

synthesis adaptation systems. The result indicates an 
important clue that we should not use as many data as 
possible but instead only use data that have similar 
characteristic such as gender or age to achieve optimize 
results in term of duration adaptation. 
 

5. CONCLUSION 
 
In this paper, we have described a high quality speech corpus 
for Vietnamese that is suitable for data analysis and 
constructing speech synthesis systems. The work result is a 

high-quality data set that contains 5,400 utterances with the 
accompanied text which were recorded by variety gender and 
age speakers. This is the minimum data set that meets our 
target which guarantee that the amount of short sentences 
with phonetic balanced is suitable for speech synthesis 
adaptation. Future work will focus on expanding the data size 
in both term of speakers and accent, as well as, utilizing the 
corpus to construct Vietnamese speech synthesis adaptation 
systems.  
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